siRNA / miRNA gene silencing Human Primary Human Hepatocytes

- Found 5613 results

Get tips on using BUV395 Mouse Anti-Human CD123 to perform Flow cytometry Anti-bodies Human - CD123/IL3-R

Products BD Biosciences BUV395 Mouse Anti-Human CD123

Get tips on using PE Mouse Anti-Human CD31 to perform Flow cytometry Anti-bodies Human - CD31/PECAM-1

Products BD Biosciences PE Mouse Anti-Human CD31

Get tips on using Human IL-6R alpha Antibody to perform Flow cytometry Anti-bodies Human - CD126/IL-6Ralpha

Products R&D Systems Human IL-6R alpha Antibody

Get tips on using Anti-Human CD282 (TLR2) FITC to perform Flowcytometry TLR2 (CD282) - Mouse / IgG1, kappa Human FITC

Products eBioscience Anti-Human CD282 (TLR2) FITC

Get tips on using Anti-Human CD3 PE-Cyanine7 to perform Flowcytometry CD3 - Mouse / IgG1, kappa Human PE-Cyanine7

Products eBioscience Anti-Human CD3 PE-Cyanine7

Get tips on using miRNeasy Mini kit to perform RNA isolation / purification Cells - primary human cardiac fibroblasts

Products Qiagen miRNeasy Mini kit

Get tips on using NucleoSpin® miRNA to perform RNA isolation / purification Cells - primary canine aortic endothelial cells

Products Macherey Nagel NucleoSpin® miRNA

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Human Activation hATCB

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Human Activation SOX2

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Human Activation ESR1

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms