siRNA / miRNA gene silencing Human BxPC-3

- Found 5721 results

Reporter gene assays enable high sensitivity measurement of gene expression and cell signaling through the addition of bioluminescent genes into target cells. One of the major challenges is to make a specific construct that has no responses other than those related to the signaling pathway of interest. This can be achieved by selecting highly specific reporter constructs containing only defined responsive elements and a minimal promoter linked to reporter enzymes such as luciferase

Cellular assays Reporter gene assay β-galactosidase substrates HeLa cervical cancer cells

Reporter gene assays enable high sensitivity measurement of gene expression and cell signaling through the addition of bioluminescent genes into target cells. One of the major challenges is to make a specific construct that no responses other than those related to the signaling pathway of interest. This can be achieved by selecting a highly specific reporter constructs containing only defined responsive elements and a minimal promoter linked to reporter enzyme such as luciferase.

Cellular assays Reporter gene assay β-galactosidase substrates mouse mesenchymal stem cells

Reporter gene assays enable high sensitivity measurement of gene expression and cell signaling through the addition of bioluminescent genes into target cells. One of the major challenges is to make a specific construct that has no responses other than those related to the signaling pathway of interest. This can be achieved by selecting highly specific reporter constructs containing only defined responsive elements and a minimal promoter linked to reporter enzymes such as luciferase

Cellular assays Reporter gene assay β-galactosidase substrates mouse pancreatic stellate cells

Reporter gene assays enable high sensitivity measurement of gene expression and cell signaling through the addition of bioluminescent genes into target cells. One of the major challenges is to make a specific construct that has no responses other than those related to the signaling pathway of interest. This can be achieved by selecting highly specific reporter constructs containing only defined responsive elements and a minimal promoter linked to reporter enzymes such as luciferase

Cellular assays Reporter gene assay β-galactosidase substrates INS-1 832/13

Site-directed mutagenesis (SDM) can be challenging, particularly during detection/confirmation of (SDM) in colonies by sequencing or PCR techniques. This common issue in SDM is heavily relying on designing of mutagenic primer pairs. The best solution is to design the mutagenic primers that have extended 3'-ends/3'-overhang. This would provide the annealing region between the mutagenic primer pair is essentially shorter. and hence ensure a lower annealing temperature for the primer pair along with a higher chance of annealing to the template.

DNA Site Directed Mutagenesis (SDM) Mouse Point mutation L929 SigmaR1 gene (σ1)

Get tips on using TurboFect Transfection Reagents to perform siRNA / RNAi /miRNA transfection Rat - A-10 Cationic lipid based

Products Thermo Fisher Scientific TurboFect Transfection Reagents

Get tips on using HiPerFect Transfection Reagent to perform siRNA / RNAi /miRNA transfection Rat - A-10 Cationic lipid based

Products Qiagen HiPerFect Transfection Reagent

Get tips on using HiPerFect Transfection Reagent to perform siRNA / RNAi /miRNA transfection Rat - H9c2 Cationic and neutral lipids

Products Qiagen HiPerFect Transfection Reagent

Get tips on using TurboFect Transfection Reagents to perform siRNA / RNAi /miRNA transfection Rat - H9c2 Cationic and neutral lipids

Products Thermo Fisher Scientific TurboFect Transfection Reagents

Get tips on using TransIT-TKO Transfection Reagent to perform siRNA / RNAi /miRNA transfection Mouse - Primary Splenocytes Polymer / lipid

Products Mirus TransIT-TKO Transfection Reagent

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms