Get tips on using 3D-Gene® Mouse miRNA Oligo chip (ver.21) to perform Microarray Gene expression arrays - Mouse liver tissue Cyanine-3-CTP
Stem cells have the unique ability to self-renew or differentiate themselves into various cell types in response to appropriate signals. These cells are especially important for tissue repair, regeneration, replacement, or in the case of hematopoietic stem cells (HSCs) to differentiate into various myeloid populations. Appropriate signals refer to the growth factor supplements or cytokines that mediate differentiation of various stem cells into the required differentiated form. For instance, HSCs can be differentiated into dendritic cells (with IL-4 and GM-CSF), macrophages (with m-CSF) and MDSCs (with IL-6 and GM-CSF). Human pluripotent stem cells (hPSCs) and induced pluripotent stem cells (iPSCs) can be first cultured in neural differentiation media (GSK3𝛃-i, TGF𝛃-i, AMPK-i, hLIF) to form neural rosettes, which can be differentiated into neural or glial progenitors (finally differentiated into oligodendrocytes). Neural progenitors can be finally differentiated into glutaminergic (dibytyryl cAMP, ascorbic acid) and dopaminergic (SHH, FGF-8, BDNF, GDNF, TGF-𝛃3) neurons. Thus, it is important to first identify the self-renewing cell line: its source and its final differentiation state, followed by the supplements and cytokines required for the differentiation, and final use. Timelines are another thing that is considered. For instance, it takes 7-10 days to form neural rosettes from iPSCs and 3 days to differentiate neural progenitors to neurons. Finally, the stability for stem cell culture media varies. It is advised to make fresh media every time when differentiating HSCs to myeloid populations, whereas neural differentiation media may remain stable for two weeks when stored in dark between 2-8C.
Get tips on using GeneChip® Human Genome U133 Plus 2.0 Array to perform Microarray Gene expression arrays - Human endometrial stromal cells Biotin
Get tips on using Lipofectamine® RNAiMAX Transfection Reagent to perform siRNA / RNAi /miRNA transfection Human Cells - OV-2008 Lipofectamine
Get tips on using TransIT®-LT1 Transfection Reagent to perform siRNA / RNAi /miRNA transfection Human Cells - HNSCC Polymer / Lipid
Get tips on using Lipofectamine® RNAiMAX Transfection Reagent to perform siRNA / RNAi /miRNA transfection Human Cells - NK-92 Lipofectamine
DNA isolation and purification is the first critical step in sample preparation that helps ensure optimal performance of downstream assays like PCR, microarrays, and sequencing. Failure in yielding high-quality DNA would be the major reason that DNA doesn't work for the downstream application. To circumvent this, one should follow the recommended storage conditions to minimize DNA degradation by nucleases and shouldn't overload the purification system.
Get tips on using MISSION® esiRNA_esiRNA targeting mouse Lrp5 (esiRNA1) to perform siRNA / miRNA gene silencing Mouse - MLO‐Y4 Lrp5
Get tips on using MISSION® esiRNA_esiRNA targeting mouse Lrp6 (esiRNA1) to perform siRNA / miRNA gene silencing Mouse - MLO‐Y4 Lrp6
Get tips on using mirVana™ miRNA Isolation Kit, with phenol to perform RNA isolation / purification Cells - primary porcine primary airway epithelial cell
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment