Get tips on using Cell Counting Kit-8 to perform Live / Dead assay mammalian cells - INS-1 832/12
TUNEL assay is the cell death detection method where the biochemical marker of apoptosis is DNA fragmentation. The assay involves the microscopical detection of generated DNA fragments with free 3'-hydroxyl residues. in apoptotic cells using enzyme terminal deoxynucleotidyl transferase (TdT) which adds biotinylated nucleotides at the site of DNA breaks. Major challenges of this method involve proper access of the enzyme which could be hampered by poor permeabilization and/or excessive fixation with cross-linking fixative (common with archival tissue). This issue can be resolved by optimizing the incubation time with Proteinase K or CytoninTM.
Get tips on using Cell Counting Kit-8 to perform RNA quantification Coloremetric
Get tips on using Mesenchymal Stem Cell Chondrogenic Differentiation Medium to perform Stem cell Differentiation media hBMSCs differentiation into chondrogenic cells
Get tips on using Mesenchymal Stem Cell Chondrogenic Differentiation Medium to perform Stem cell Differentiation media hUMSCs differentiation into chondrogenic cells
Get tips on using Mesenchymal Stem Cell Adipogenic Differentiation Medium to perform Stem cell Differentiation media hUMSCs differentiation into adipogenic cells
Get tips on using CellTiter-Glo® Luminescent Cell Viability Assay to perform Cell cytotoxicity / Proliferation assay cell type - BxPc-3 human primary pancreatic adenocarcinoma
Wound healing assay can be challenging due to inconsistencies and variations while making a wound on the confluent cell monolayer, consequently leads to wounds of varying sizes and widths. Moreover, this assay causes damage to the cells that are at the edge of the wound, which can prevent cell migration into the wound site and healing. The best solution is to use the standard wound healing assay kits using either combs or inserts to make a defined wound field or gap and prevent the well-to-well variation in these assays.
Bacterial culture is a process of letting bacteria multiply in a controlled fashion (temperature, humidity, oxygen content or shaking), in a predetermined culture medium (antibiotic resistance to obtain homogenous clones). It is an important step, especially during cloning, as a single cell can be grown homogeneously (on semi-solid or in liquid conditions) to obtain colonies. As mentioned, bacteria can be cultured in broth cultures (Luria broth or LB) or Petri dishes (Agar plates). A specific antibiotic can be added to the broth or agar plates in order to grow bacteria which have the gene insert conferring its resistance to that antibiotic. Following points are necessary to consider for optimal growth conditions: 1. In general, most bacteria grow well at 37C, but there are some strains which require growth temperatures between 25-30C. 2. It is ideal in broth cultures to fill the flask to ⅓ or less of the total flask volume for optimal aerobic growth. 3. Shaking speeds between 140-180 rpm are appropriate to ensure aeration and that the cells are surrounded by fresh media, and do not settle.
Bacterial culture is a process of letting bacteria multiply in a controlled fashion (temperature, humidity, oxygen content or shaking), in a predetermined culture medium (antibiotic resistance to obtain homogenous clones). It is an important step, especially during cloning, as a single cell can be grown homogeneously (on semi-solid or in liquid conditions) to obtain colonies. As mentioned, bacteria can be cultured in broth cultures (Luria broth or LB) or Petri dishes (Agar plates). A specific antibiotic can be added to the broth or agar plates in order to grow bacteria which have the gene insert conferring its resistance to that antibiotic. Following points are necessary to consider for optimal growth conditions: 1. In general, most bacteria grow well at 37C, but there are some strains which require growth temperatures between 25-30C. 2. It is ideal in broth cultures to fill the flask to ⅓ or less of the total flask volume for optimal aerobic growth. 3. Shaking speeds between 140-180 rpm are appropriate to ensure aeration and that the cells are surrounded by fresh media, and do not settle.
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment