Select a method


CRISPR Mouse

- Found 2111 results

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Human Repression HPV-18 E6

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Human Repression HPV-16 E6

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Human Repression HPV-16 E7

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Rat Deletion PC12 myosin IIA (Myh9)

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Human Activation HIV-1 5′ LTR

Get tips on using HE4 CRISPR/Cas9 KO Plasmid (h) to perform CRISPR Human - Repression HE4

Products Santa Cruz Biotechnology HE4 CRISPR/Cas9 KO Plasmid (h)

Get tips on using dCK CRISPR/Cas9 KO Plasmid (h) to perform CRISPR Human - Repression DCK

Products Santa Cruz Biotechnology dCK CRISPR/Cas9 KO Plasmid (h)

Get tips on using GRP 78 CRISPR Knockout and Activation to perform CRISPR Human - Activation GRP78

Products Santa Cruz Biotechnology GRP 78 CRISPR Knockout and Activation

Get tips on using Multiplex CRISPR/Cas9 Assembly System Kit to perform CRISPR Human - Activation hATCB

Products Addgene Multiplex CRISPR/Cas9 Assembly System Kit

Get tips on using GRP 78 CRISPR Knockout and Activation to perform CRISPR Human - Activation GRP 78

Products Santa Cruz Biotechnology GRP 78 CRISPR Knockout and Activation

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms