Though DNA quantification is but one small step in the multifaceted DNA sample preparation workflow, it can have large implications on the performance and validity of conclusions drawn from downstream assays. Major challenges include accuracy, precision, reproducibility, and detection of present contamination. Among UV spectrophotometry, fluorescence and real-time PCR based methods, the quantification method should be chosen based on the requirement of the downstream assay.
Though DNA quantification is but one small step in the multifaceted DNA sample preparation workflow, it can have large implications on the performance and validity of conclusions drawn from downstream assays. Major challenges include accuracy, precision, reproducibility, and detection of present contamination. Among UV spectrophotometry, fluorescence and real-time PCR based methods, the quantification method should be chosen based on the requirement of the downstream assay.
Though DNA quantification is but one small step in the multifaceted DNA sample preparation workflow, it can have large implications on the performance and validity of conclusions drawn from downstream assays. Major challenges include accuracy, precision, reproducibility, and detection of present contamination. Among UV spectrophotometry, fluorescence and real-time PCR based methods, the quantification method should be chosen based on the requirement of the downstream assay.
Get tips on using Tau Protein Ladder, 6 isoforms human to perform Protein Ladder Immunofluorescence
Get tips on using RosetteSep™ Human Monocyte Enrichment Cocktail to perform Cell Isolation Monocyte
Get tips on using EasySep™ Human Monocyte Enrichment Kit to perform Cell Isolation Monocyte
Get tips on using EasySep™ Human Monocyte Isolation Kit to perform Cell Isolation Monocyte
Get tips on using Human Notch-1 Intracellular Domain Antibody to perform Western blotting Notch1
Get tips on using Active BDNF (Human, Rat) ELISA Kit to perform ELISA Mouse - GDNF
Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment