RNA sequencing Rat

- Found 5164 results

Get tips on using ELISA Kit for C Reactive Protein (CRP) to perform ELISA Rat - C-Reactive Protein/CRP

Products Cloud Clone ELISA Kit for C Reactive Protein (CRP)

Get tips on using Anti-Glial Fibrillary Acidic Protein Antibody, clone GA5 to perform Immunohistochemistry Rat - GFAP

Products Merck Millipore Anti-Glial Fibrillary Acidic Protein Antibody, clone GA5

Get tips on using EZ-Magna ChIP™ G - Chromatin Immunoprecipitation Kit to perform ChIP Rat - Liver

Products Merck Millipore EZ-Magna ChIP™ G - Chromatin Immunoprecipitation Kit

Get tips on using Lipofectamine® 2000 Transfection Reagent to perform DNA transfection Mammalian cells - Primary cells Rat cardiomyocytes

Products Thermo Fisher Scientific Lipofectamine® 2000 Transfection Reagent

Get tips on using FuGENE® 6 Transfection Reagent to perform DNA transfection Mammalian cells - Primary cells Rat cardiomyocytes

Products Promega FuGENE® 6 Transfection Reagent

Get tips on using FuGENE® HD Transfection Reagent to perform DNA transfection Mammalian cells - Primary cells Rat microglia

Products Promega FuGENE® HD Transfection Reagent

Get tips on using Lipofectamine® 2000 Transfection Reagent to perform DNA transfection Mammalian cells - Primary cells Rat microglia

Products Thermo Fisher Scientific Lipofectamine® 2000 Transfection Reagent

Get tips on using Lipofectamine™ 3000 Transfection Reagent to perform DNA transfection Mammalian cells - Primary cells Rat astrocytes

Products Thermo Fisher Scientific Lipofectamine™ 3000 Transfection Reagent

The formation of DNA from an RNA template using reverse transcription leads to the formation of double-stranded complementary DNA or cDNA. The challenges with this process include 1. Maintaining the integrity of RNA, 2. Hairpin loops or other secondary structures formed by single-stranded RNA can also affect cDNA synthesis, and 3. DNA-RNA hybrids, which may result when the first strand of cDNA is formed. For the first challenge, using workflows that involve proper isolation and storage of RNA, and maintaining a nuclease-free environment helps obtain RNA with ideal 260/230 ratios. Using a reverse transcriptase that can tolerate high temperatures (50-55oC), overcomes obstacles imposed by secondary RNA structures. Finally, RNase H has the ability to hydrolyze RNA before the formation of a second cDNA strand. It is important to ensure that RNase H activity is optimal because higher RNase H activity leads to premature degradation of the RNA template. Many reverse transcriptases offer built-in RNase H activity.

RNA cDNA synthesis Tissue

The formation of DNA from an RNA template using reverse transcription leads to the formation of double-stranded complementary DNA or cDNA. The challenges with this process include 1. Maintaining the integrity of RNA, 2. Hairpin loops or other secondary structures formed by single-stranded RNA can also affect cDNA synthesis, and 3. DNA-RNA hybrids, which may result when the first strand of cDNA is formed. For the first challenge, using workflows that involve proper isolation and storage of RNA, and maintaining a nuclease-free environment helps obtain RNA with ideal 260/230 ratios. Using a reverse transcriptase that can tolerate high temperatures (50-55oC), overcomes obstacles imposed by secondary RNA structures. Finally, RNase H has the ability to hydrolyze RNA before the formation of a second cDNA strand. It is important to ensure that RNase H activity is optimal because higher RNase H activity leads to premature degradation of the RNA template. Many reverse transcriptases offer built-in RNase H activity.

RNA cDNA synthesis Yeast

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms