Get tips on using Quick Start™ Bradford Protein Assay Kit 1 to perform Protein quantification Mammalian cells - BV-2
Get tips on using NE-PER™ Nuclear and Cytoplasmic Extraction Reagents to perform Protein isolation Mammalian cells - HLE-B3
Get tips on using MISSION® pLKO.1-puro Non-Mammalian shRNA Control Transduction Particles to perform shRNA gene silencing Human - Islets of langerhans Negative control (scrambled) lentiviral particles
Get tips on using LIVE/DEAD™ Fixable Aqua Dead Cell Stain Kit to perform Live / Dead assay mammalian cells - mouse keratinocytes
DNA ladder is typically used as a reference to estimate the size of unknown DNA samples that are separated based on their mobility in an electrical field. The critical points for running a DNA ladder are compatibility with running buffer, agarose gel percentage, and choosing the correct range of DNA ladder for sizing DNA molecules.
DNA ladder is typically used as a reference to estimate the size of unknown DNA samples that are separated based on their mobility in an electrical field. The critical points for running a DNA ladder are compatibility with running buffer, agarose gel percentage, and choosing the correct range of DNA ladder for sizing DNA molecules.
DNA ladder is typically used as a reference to estimate the size of unknown DNA samples that are separated based on their mobility in an electrical field. The critical points for running a DNA ladder are compatibility with running buffer, agarose gel percentage, and choosing the correct range of DNA ladder for sizing DNA molecules.
Gene silencing through the use of small interfering RNA (siRNA) has become a primary tool for identifying disease-causing genes. There are several aspects for preparing and delivering effective siRNA to knockdown a target gene. The length of siRNA should be 21–23nt long with G/C content 30–50%. If a validated siRNA sequence for your target gene is not available, use siRNA generated against the entire target gene ORF. Always work with two or three different siRNA constructs to get reliable results. If you are not sure how much siRNA to use for a given experiment, start with a transfection concentration of 10-50 nM and use siRNA-specific transfection reagent to ensure efficient siRNA delivery in a wide range of cells.
Gene silencing through the use of small interfering RNA (siRNA) has become a primary tool for identifying disease-causing genes. There are several aspects for preparing and delivering effective siRNA to knockdown a target gene. The length of siRNA should be 21–23nt long with G/C content 30–50%. If a validated siRNA sequence for your target gene is not available, use siRNA generated against the entire target gene ORF. Always work with two or three different siRNA constructs to get reliable results. If you are not sure how much siRNA to use for a given experiment, start with a transfection concentration of 10-50 nM and use siRNA-specific transfection reagent to ensure efficient siRNA delivery in a wide range of cells.
Gene silencing through the use of small interfering RNA (siRNA) has become a primary tool for identifying disease-causing genes. There are several aspects for preparing and delivering effective siRNA to knockdown a target gene. The length of siRNA should be 21–23nt long with G/C content 30–50%. If a validated siRNA sequence for your target gene is not available, use siRNA generated against the entire target gene ORF. Always work with two or three different siRNA constructs to get reliable results. If you are not sure how much siRNA to use for a given experiment, start with a transfection concentration of 10-50 nM and use siRNA-specific transfection reagent to ensure efficient siRNA delivery in a wide range of cells.
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment