Get tips on using LIVE/DEAD™ Viability/Cytotoxicity Kit, for mammalian cells to perform Live / Dead assay mammalian cells - MCF-7 human breast cancer cells
Get tips on using Viability/Cytotoxicity Assay Kit for Animal Live & Dead Cells to perform Live / Dead assay mammalian cells - FE002-SK2 human skin progenitor cells
Get tips on using LIVE/DEAD™ BacLight™ Bacterial Viability Kit, for microscopy & quantitative assays to perform Live / Dead assay bacteria - Staphylococcus aureus
Get tips on using LIVE/DEAD™ Viability/Cytotoxicity Kit, for mammalian cells to perform Live / Dead assay mammalian cells - MDA-MB-231 human breast cancer cells
Get tips on using OxiSelect™ In Vitro ROS/RNS Assay Kit (Green Fluorescence) to perform ROS assay cell type - Capan-2, PANC-1 pancreatic carcinoma
Get tips on using LIVE/DEAD™ BacLight™ Bacterial Viability Kit, for microscopy & quantitative assays to perform Live / Dead assay bacteria - Borrelia burgdorferi
Get tips on using OxiSelect™ In Vitro ROS/RNS Assay Kit (Green Fluorescence) to perform ROS assay cell type - PLHC-1 poeciliopsis lucida hepatocellular carcinoma
Get tips on using Live or Dead™ Cell Viability Assay Kit *Green/Red Dual Fluorescence to perform Live / Dead assay mammalian cells - rat endothelial progenitor cells
Get tips on using OxiSelect™ In Vitro ROS/RNS Assay Kit (Green Fluorescence) to perform ROS assay cell type - PLHC-1, SK-HEP-1, Hep3b, HepG2 human hepatocellular carcinoma
Generally isolating RNA from Gram-negative bacteria is easy, however keeping your working environment clean and RNase free (use RNase inhibitor) is essential. Some common points to keep in mind: a) Use fresh samples for isolation or store them by freezing in RNA stabilizing buffer until use. b) Choose the bacterial input amounts carefully, to ensure buffer volumes are adequate and not to overload the columns.
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment