siRNA / miRNA gene silencing Human PANC-1

- Found 6320 results

RNA RNA isolation / purification Cells Cancer cell lines Leukemia cancer cell lines KG-1

Get tips on using Galacto-Light Plus™ β-Galactosidase Reporter Gene Assay System to perform Reporter gene assay β-galactosidase substrates - U87 and U251 glioblastoma cells

Products Thermo Fisher Scientific Galacto-Light Plus™ β-Galactosidase Reporter Gene Assay System

Get tips on using Senescence β-Galactosidase Staining Kit - Beyotime to perform Reporter gene assay β-galactosidase substrates - SK-Hep-1

Products Beyotime Senescence β-Galactosidase Staining Kit - Beyotime

Get tips on using 300 prep FavorPrep™ Plasmid DNA Extraction Mini Kit (sample size: 1~ 5 ml culture cells) to perform Plasmid Isolation Vibrio parahaemolyticus

Products Favorgen 300 prep FavorPrep™ Plasmid DNA Extraction Mini Kit (sample size: 1~ 5 ml culture cells)

Get tips on using Reactive Oxygen Species (ROS) Detection Assay Kit to perform ROS assay cell type - PLHC-1, SK-HEP-1, Hep3b, HepG2 human hepatocellular carcinoma

Products Biovision Reactive Oxygen Species (ROS) Detection Assay Kit

Flow cytometry is an immunophenotyping technique whereby sing cell suspensions are stained for either cell surface markers or intracellular proteins by fluorescently-labelled antibodies and analyzed with a flow cytometer, where fluorescently-labelled molecules are excited by the laser to emit light at varying wavelengths, which is then detected by the instrument. There are several key criteria which are required to be kept in mind while designing a flow experiment- 1. Antibody titration (optimal dilution of antibodies should be calculated in order to avoid over- or under- saturated signals for proper detection of surface and intracellular markers), 2. Precision (3 or more replicates of the sample should be used per experiment), 3. Specificity (proper isotype controls should be included in the experiment), 4. Day-to-day variability (experiments should be repeated 3 or more times to ensure consistency and avoid variability due to flow cytometer settings), 5. Antibody interaction (Fluorescence minus one or FMO should be used, which is the comparison of signals from panel minus one antibody vs. the full panel), and 6. Antibody stability (fluorescently-labelled antibodies should be stored at 4C).

Proteins Flow cytometry Anti-bodies Human CD126/IL-6Ralpha

Flow cytometry is an immunophenotyping technique whereby sing cell suspensions are stained for either cell surface markers or intracellular proteins by fluorescently-labelled antibodies and analyzed with a flow cytometer, where fluorescently-labelled molecules are excited by the laser to emit light at varying wavelengths, which is then detected by the instrument. There are several key criteria which are required to be kept in mind while designing a flow experiment- 1. Antibody titration (optimal dilution of antibodies should be calculated in order to avoid over- or under- saturated signals for proper detection of surface and intracellular markers), 2. Precision (3 or more replicates of the sample should be used per experiment), 3. Specificity (proper isotype controls should be included in the experiment), 4. Day-to-day variability (experiments should be repeated 3 or more times to ensure consistency and avoid variability due to flow cytometer settings), 5. Antibody interaction (Fluorescence minus one or FMO should be used, which is the comparison of signals from panel minus one antibody vs. the full panel), and 6. Antibody stability (fluorescently-labelled antibodies should be stored at 4C).

Proteins Flow cytometry Anti-bodies Human CD123/IL3-R

Flow cytometry is an immunophenotyping technique whereby sing cell suspensions are stained for either cell surface markers or intracellular proteins by fluorescently-labelled antibodies and analyzed with a flow cytometer, where fluorescently-labelled molecules are excited by the laser to emit light at varying wavelengths, which is then detected by the instrument. There are several key criteria which are required to be kept in mind while designing a flow experiment- 1. Antibody titration (optimal dilution of antibodies should be calculated in order to avoid over- or under- saturated signals for proper detection of surface and intracellular markers), 2. Precision (3 or more replicates of the sample should be used per experiment), 3. Specificity (proper isotype controls should be included in the experiment), 4. Day-to-day variability (experiments should be repeated 3 or more times to ensure consistency and avoid variability due to flow cytometer settings), 5. Antibody interaction (Fluorescence minus one or FMO should be used, which is the comparison of signals from panel minus one antibody vs. the full panel), and 6. Antibody stability (fluorescently-labelled antibodies should be stored at 4C).

Proteins Flow cytometry Anti-bodies Human CD110/Thrombopoietin R

Get tips on using GeneArt™ CRISPR Nuclease Vector with OFP Reporter Kit to perform CRISPR Human - Deletion DJ-1

Products Thermo Fisher Scientific GeneArt™ CRISPR Nuclease Vector with OFP Reporter Kit

Get tips on using QuantiFluor® dsDNA System to perform DNA quantification Human - THP 1

Products Promega QuantiFluor® dsDNA System

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms