siRNA / miRNA gene silencing Human EM-2

- Found 6123 results

Get tips on using FITC anti-human CD4 Antibody to perform Flow cytometry Anti-bodies Human - CD4

Products BioLegend FITC anti-human CD4 Antibody

Get tips on using Anti-human vimentin (clone V9) to perform Flow cytometry Anti-bodies Human - Vimentin

Products ARA Antibodies for Research Applications B.V. Anti-human vimentin (clone V9)

Get tips on using FITC Mouse Anti-Human CD90 to perform Flow cytometry Anti-bodies Human - CD90

Products BD Biosciences FITC Mouse Anti-Human CD90

Get tips on using PE Mouse Anti-Human CD90 to perform Flow cytometry Anti-bodies Human - CD90

Products BD Biosciences PE Mouse Anti-Human CD90

Get tips on using APC anti-human CD24 Antibody to perform Flow cytometry Anti-bodies Human - CD24

Products BioLegend APC anti-human CD24 Antibody

Get tips on using BV605 Mouse Anti-Human CD15 to perform Flow cytometry Anti-bodies Human - CD15

Products BD Biosciences BV605 Mouse Anti-Human CD15

Get tips on using PE Mouse Anti-Human CD44 to perform Flow cytometry Anti-bodies Human - CD44

Products BD Biosciences PE Mouse Anti-Human CD44

Get tips on using CRP (Human) ELISA Kit (KA0238) to perform ELISA Human - C-Reactive Protein/CRP

Products Abnova CRP (Human) ELISA Kit (KA0238)

Transfection is a powerful technique that enables the study of the function of genes and gene products in cells. Based on the nature of experiments, we may need a stable DNA transfection in cells for persistent gain-of-function or loss-of-function of the target gene. For stable transfection, integration of a DNA vector into the chromosome is crucial which requires selective screening and clonal isolation. By carefully selecting a viral delivery system and related reagents we can ensure safe and highly-efficient delivery of expression constructs for high-level constitutive or inducible expression in any mammalian cell type.

DNA DNA transfection Mammalian cells Primary cells Human pulmonary artery smooth muscle cells (HPASMC)

The process of RNA extraction from bacteria, in general, involves an RNA-protective, effective lysis of bacterial cell wall (which may pose difficulties). EDTA promotes loss of outer membrane to provide lysozyme with access to peptidoglycan. Another common method for cell wall lysis is mechanical disruption using a homogenizer (applied for gram-positive bacteria and some strains of gram-negative bacteria). Following lysis, it is necessary to disrupt protein-nucleic acid interactions, which can be achieved by adding sodium dodecyl sulfate (SDS). Next step involves using phenol-chloroform-isoamyl alcohol extraction, where RNA can be obtained from the bottom organic phase, the top phase consists of DNA and the interphase contains proteins. Isoamyl alcohol is an inert and optional addition to this mixture and is added as an anti-foaming reagent to reduce the interphase. Following RNA extraction, the samples should be checked for its quality by gel electrophoresis (23S and 16S rRNAs and 5s rRNA and tRNA bands) or UV spectrophotometric or fluorescence methods.

RNA RNA isolation / purification Tissue Human Lung

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms