Microarray Gene expression arrays Human whole blood cells

- Found 8734 results

Get tips on using pIRES2-EGFP-PBD-1 to perform Protein Expression Prokaryotic cells - E. coli PBD1-EGFP

Products Hai-Jun Huang, Department of Animal Biotechnology and Cell Engin pIRES2-EGFP-PBD-1

Get tips on using pRSET A-FhFtn-1 to perform Protein Expression Prokaryotic cells - E. coli FhFtn-1

Products Ana M. Espino, Department of Microbiology, University of Puerto pRSET A-FhFtn-1

Get tips on using pTRAkc-AH/pRIC 3.0 to perform Protein Expression Prokaryotic cells - A. tumefaciens BFDV cp

Products Inga I. Hitzeroth, Biopharming Research Unit, Department of Mole pTRAkc-AH/pRIC 3.0

Get tips on using pTRAkc-ERH/pRIC 3.0 to perform Protein Expression Prokaryotic cells - A. tumefaciens BFDV cp

Products Inga I. Hitzeroth, Biopharming Research Unit, Department of Mole pTRAkc-ERH/pRIC 3.0

Generally it has been difficult to isolate high-quality RNA from yeast because of problems disrupting the cells. Use of enzymes to disrupt cell wall can alter gene expression profiles. Therefore, physical disruption can result in high quality RNA for all downstream processing. Use of DNAse and proteinase K will remove traces of DNA contamination and proteins respectively.

RNA RNA isolation / purification Yeast Saccharomyces cerevisiae

Generally it has been difficult to isolate high-quality RNA from yeast because of problems disrupting the cells. Use of enzymes to disrupt cell wall can alter gene expression profiles. Therefore, physical disruption can result in high quality RNA for all downstream processing. Use of DNAse and proteinase K will remove traces of DNA contamination and proteins respectively.

RNA RNA isolation / purification Yeast Ashbya gossypii

Generally it has been difficult to isolate high-quality RNA from yeast because of problems disrupting the cells. Use of enzymes to disrupt cell wall can alter gene expression profiles. Therefore, physical disruption can result in high quality RNA for all downstream processing. Use of DNAse and proteinase K will remove traces of DNA contamination and proteins respectively.

RNA RNA isolation / purification Yeast Aspergillus nidulans

Generally it has been difficult to isolate high-quality RNA from yeast because of problems disrupting the cells. Use of enzymes to disrupt cell wall can alter gene expression profiles. Therefore, physical disruption can result in high quality RNA for all downstream processing. Use of DNAse and proteinase K will remove traces of DNA contamination and proteins respectively.

RNA RNA isolation / purification Yeast Candida albicans

Generally it has been difficult to isolate high-quality RNA from yeast because of problems disrupting the cells. Use of enzymes to disrupt cell wall can alter gene expression profiles. Therefore, physical disruption can result in high quality RNA for all downstream processing. Use of DNAse and proteinase K will remove traces of DNA contamination and proteins respectively.

RNA RNA isolation / purification Yeast Coprinus cinereus

Generally it has been difficult to isolate high-quality RNA from yeast because of problems disrupting the cells. Use of enzymes to disrupt cell wall can alter gene expression profiles. Therefore, physical disruption can result in high quality RNA for all downstream processing. Use of DNAse and proteinase K will remove traces of DNA contamination and proteins respectively.

RNA RNA isolation / purification Yeast Cryptococcus neoformans

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms