Get tips on using Mouse/Rat Angiopoietin-2 Quantikine ELISA Kit to perform ELISA Rat - ANGPT2
Get tips on using Rat Angiopoietin 2,ANG-2 ELISA Kit to perform ELISA Rat - ANGPT2
Get tips on using Beta-Lactamase Activity Assay Kit to perform Reporter gene assay β-lactamase substrates - Burkholderia cepacia complex
Get tips on using Active rat PAI-1 functional assay ELISA kit to perform ELISA Rat - Serpin E1/PAI-1
Get tips on using Rat plasminogen activator inhibitor 1,PAI1 ELISA Kit to perform ELISA Rat - Serpin E1/PAI-1
Get tips on using Mitochondrial ROS Activity Assay Kit (Deep Red Fluorescence) to perform ROS assay cell type - mouse cardiomyocytes
Get tips on using Non-phospho (Active) β-Catenin (Ser33/37/Thr41) (D13A1) Rabbit mAb #8814 to perform Immunohistochemistry Mouse - β-Catenin
The formation of DNA from an RNA template using reverse transcription leads to the formation of double-stranded complementary DNA or cDNA. The challenges with this process include 1. Maintaining the integrity of RNA, 2. Hairpin loops or other secondary structures formed by single-stranded RNA can also affect cDNA synthesis, and 3. DNA-RNA hybrids, which may result when the first strand of cDNA is formed. For the first challenge, using workflows that involve proper isolation and storage of RNA, and maintaining a nuclease-free environment helps obtain RNA with ideal 260/230 ratios. Using a reverse transcriptase that can tolerate high temperatures (50-55oC), overcomes obstacles imposed by secondary RNA structures. Finally, RNase H has the ability to hydrolyze RNA before the formation of a second cDNA strand. It is important to ensure that RNase H activity is optimal because higher RNase H activity leads to premature degradation of the RNA template. Many reverse transcriptases offer built-in RNase H activity.
The formation of DNA from an RNA template using reverse transcription leads to the formation of double-stranded complementary DNA or cDNA. The challenges with this process include 1. Maintaining the integrity of RNA, 2. Hairpin loops or other secondary structures formed by single-stranded RNA can also affect cDNA synthesis, and 3. DNA-RNA hybrids, which may result when the first strand of cDNA is formed. For the first challenge, using workflows that involve proper isolation and storage of RNA, and maintaining a nuclease-free environment helps obtain RNA with ideal 260/230 ratios. Using a reverse transcriptase that can tolerate high temperatures (50-55oC), overcomes obstacles imposed by secondary RNA structures. Finally, RNase H has the ability to hydrolyze RNA before the formation of a second cDNA strand. It is important to ensure that RNase H activity is optimal because higher RNase H activity leads to premature degradation of the RNA template. Many reverse transcriptases offer built-in RNase H activity.
The formation of DNA from an RNA template using reverse transcription leads to the formation of double-stranded complementary DNA or cDNA. The challenges with this process include 1. Maintaining the integrity of RNA, 2. Hairpin loops or other secondary structures formed by single-stranded RNA can also affect cDNA synthesis, and 3. DNA-RNA hybrids, which may result when the first strand of cDNA is formed. For the first challenge, using workflows that involve proper isolation and storage of RNA, and maintaining a nuclease-free environment helps obtain RNA with ideal 260/230 ratios. Using a reverse transcriptase that can tolerate high temperatures (50-55oC), overcomes obstacles imposed by secondary RNA structures. Finally, RNase H has the ability to hydrolyze RNA before the formation of a second cDNA strand. It is important to ensure that RNase H activity is optimal because higher RNase H activity leads to premature degradation of the RNA template. Many reverse transcriptases offer built-in RNase H activity.
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment