Protein Expression Prokaryotic cells C. crescentus JS1014

- Found 8982 results

Get tips on using Trichloroacetic acid to perform Protein isolation Bacteria - Chlamydia pneumoniae

Products Sigma-Aldrich Trichloroacetic acid

Get tips on using Penta·His Alexa Fluor 647 Conjugate to perform Protein tag Detection of His-tagged proteins

Products Qiagen Penta·His Alexa Fluor 647 Conjugate

Get tips on using Penta·His Alexa Fluor 488 Conjugate to perform Protein tag Detection of His-tagged proteins

Products Qiagen Penta·His Alexa Fluor 488 Conjugate

Get tips on using 3D-Gene® Mouse miRNA Oligo chip (ver.21) to perform Microarray Gene expression arrays - Mouse liver tissue Cyanine-3-CTP

Products Toray 3D-Gene® Mouse miRNA Oligo chip (ver.21)

Get tips on using CelLytic™ B Cell Lysis Reagent to perform Protein isolation Bacteria - Bacillus cellulosilyticus

Products Sigma-Aldrich CelLytic™ B Cell Lysis Reagent

Get tips on using CelLytic™ B Cell Lysis Reagent to perform Protein isolation Bacteria - Anabaena

Products Sigma-Aldrich CelLytic™ B Cell Lysis Reagent

Get tips on using CelLytic™ B Cell Lysis Reagent to perform Protein isolation Bacteria - Synechocystis

Products Sigma-Aldrich CelLytic™ B Cell Lysis Reagent

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Comperative genomic hybridization Human Colon adenocarcinoma

Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray RNA amplification & Labeling Mouse cochlaea Biotin

Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray RNA amplification & Labeling Rat spinal cord Hy5

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms