Cell Isolation

- Found 7700 results

Get tips on using Dead Cell Apoptosis Kit with Annexin V FITC and PI to perform Apoptosis assay cell type - HUVEC

Products Thermo Fisher Scientific Dead Cell Apoptosis Kit with Annexin V FITC and PI

Stem cells have the unique ability to self-renew or differentiate themselves into various cell types in response to appropriate signals. These cells are especially important for tissue repair, regeneration, replacement, or in the case of hematopoietic stem cells (HSCs) to differentiate into various myeloid populations. Appropriate signals refer to the growth factor supplements or cytokines that mediate differentiation of various stem cells into the required differentiated form. For instance, HSCs can be differentiated into dendritic cells (with IL-4 and GM-CSF), macrophages (with m-CSF) and MDSCs (with IL-6 and GM-CSF). Human pluripotent stem cells (hPSCs) and induced pluripotent stem cells (iPSCs) can be first cultured in neural differentiation media (GSK3𝛃-i, TGF𝛃-i, AMPK-i, hLIF) to form neural rosettes, which can be differentiated into neural or glial progenitors (finally differentiated into oligodendrocytes). Neural progenitors can be finally differentiated into glutaminergic (dibytyryl cAMP, ascorbic acid) and dopaminergic (SHH, FGF-8, BDNF, GDNF, TGF-𝛃3) neurons. Thus, it is important to first identify the self-renewing cell line: its source and its final differentiation state, followed by the supplements and cytokines required for the differentiation, and final use. Timelines are another thing that is considered. For instance, it takes 7-10 days to form neural rosettes from iPSCs and 3 days to differentiate neural progenitors to neurons. Finally, the stability for stem cell culture media varies. It is advised to make fresh media every time when differentiating HSCs to myeloid populations, whereas neural differentiation media may remain stable for two weeks when stored in dark between 2-8C.

Cell culture media Stem cell Differentiation media hESCs or iPSCs differentiation into ovarian follicle/granulosa cells

Stem cells have the unique ability to self-renew or differentiate themselves into various cell types in response to appropriate signals. These cells are especially important for tissue repair, regeneration, replacement, or in the case of hematopoietic stem cells (HSCs) to differentiate into various myeloid populations. Appropriate signals refer to the growth factor supplements or cytokines that mediate differentiation of various stem cells into the required differentiated form. For instance, HSCs can be differentiated into dendritic cells (with IL-4 and GM-CSF), macrophages (with m-CSF) and MDSCs (with IL-6 and GM-CSF). Human pluripotent stem cells (hPSCs) and induced pluripotent stem cells (iPSCs) can be first cultured in neural differentiation media (GSK3𝛃-i, TGF𝛃-i, AMPK-i, hLIF) to form neural rosettes, which can be differentiated into neural or glial progenitors (finally differentiated into oligodendrocytes). Neural progenitors can be finally differentiated into glutaminergic (dibytyryl cAMP, ascorbic acid) and dopaminergic (SHH, FGF-8, BDNF, GDNF, TGF-𝛃3) neurons. Thus, it is important to first identify the self-renewing cell line: its source and its final differentiation state, followed by the supplements and cytokines required for the differentiation, and final use. Timelines are another thing that is considered. For instance, it takes 7-10 days to form neural rosettes from iPSCs and 3 days to differentiate neural progenitors to neurons. Finally, the stability for stem cell culture media varies. It is advised to make fresh media every time when differentiating HSCs to myeloid populations, whereas neural differentiation media may remain stable for two weeks when stored in dark between 2-8C.

Cell culture media Stem cell Differentiation media hiPSCs differentiation into CD43+ primitive hematopoietic progenitor cells (HPCs)

Get tips on using MitoSOX™ Red Mitochondrial Superoxide Indicator, for live-cell imaging to perform ROS assay cell type - mouse cardiomyocytes

Products Thermo Fisher Scientific MitoSOX™ Red Mitochondrial Superoxide Indicator, for live-cell imaging

Get tips on using Dead Cell Apoptosis Kit with Annexin V FITC and PI to perform Apoptosis assay cell type - OECM-1

Products Thermo Fisher Scientific Dead Cell Apoptosis Kit with Annexin V FITC and PI

Get tips on using REPLI-g Advanced DNA Single Cell Kit (96) to perform Whole Genome Amplification Mouse

Products Qiagen REPLI-g Advanced DNA Single Cell Kit (96)

Get tips on using QIAseq FX Single Cell DNA Library Kit (96) to perform Whole Genome Amplification Parasites

Products Qiagen QIAseq FX Single Cell DNA Library Kit (96)

Get tips on using QIAseq FX Single Cell RNA Library Kit (96) to perform Whole Transcriptome Amplification Virus

Products Qiagen QIAseq FX Single Cell RNA Library Kit (96)

Acid phosphatase detection heavily relies on determining the concentration of tartrate-resistant acid phosphatase (TRAP) in the sample. Hence, sample preparation is very crucial and it should be done strictly as per kit manufacturer instructions to avoid any inconsistency and poor sensitivity.

Cellular assays Acid phosphatase assay cell type murine macrophage cells

Get tips on using EGMTM -2 MV Microvascular Endothelial Cell Growth Medium-2 BulletKitTM to perform Stem cell Differentiation media hMSCs differentiation into pericytes

Products Lonza EGMTM -2 MV Microvascular Endothelial Cell Growth Medium-2 BulletKitTM

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms