PCR Preamplification of cDNA

- Found 11558 results

The RNA interference (RNAi) is used to inhibit gene expression or translation, by neutralizing targeted mRNA molecules. Two types of RNA molecules such as microRNA (miRNA) and small interfering RNA (siRNA) play a central role in RNAi. Few points have to considered to increase the transfection efficiency of siRNA. Always use healthy, actively dividing cells to maximize transfection efficiency. The confluency of cells should be between 50-70%. Always use the most appropriate siRNA concentration to avoid off-target effects and unwanted toxic side effects. Positive and negative controls should be used for each and every experiment to determine transfection efficiency.

RNA siRNA / RNAi /miRNA transfection Human Cells Cal 27 cells Polymer / lipid

The RNA interference (RNAi) is used to inhibit gene expression or translation, by neutralizing targeted mRNA molecules. Two types of RNA molecules such as microRNA (miRNA) and small interfering RNA (siRNA) play a central role in RNAi. Few points have to considered to increase the transfection efficiency of siRNA. Always use healthy, actively dividing cells to maximize transfection efficiency. The confluency of cells should be between 50-70%. Always use the most appropriate siRNA concentration to avoid off-target effects and unwanted toxic side effects. Positive and negative controls should be used for each and every experiment to determine transfection efficiency.

RNA siRNA / RNAi /miRNA transfection Mouse Glomerular Mesangial cells polymer / lipid

The RNA interference (RNAi) is used to inhibit gene expression or translation, by neutralizing targeted mRNA molecules. Two types of RNA molecules such as microRNA (miRNA) and small interfering RNA (siRNA) play a central role in RNAi. Few points have to considered to increase the transfection efficiency of siRNA. Always use healthy, actively dividing cells to maximize transfection efficiency. The confluency of cells should be between 50-70%. Always use the most appropriate siRNA concentration to avoid off-target effects and unwanted toxic side effects. Positive and negative controls should be used for each and every experiment to determine transfection efficiency.

RNA siRNA / RNAi /miRNA transfection Human Cells OV-2008 Lipofectamine

The RNA interference (RNAi) is used to inhibit gene expression or translation, by neutralizing targeted mRNA molecules. Two types of RNA molecules such as microRNA (miRNA) and small interfering RNA (siRNA) play a central role in RNAi. Few points have to considered to increase the transfection efficiency of siRNA. Always use healthy, actively dividing cells to maximize transfection efficiency. The confluency of cells should be between 50-70%. Always use the most appropriate siRNA concentration to avoid off-target effects and unwanted toxic side effects. Positive and negative controls should be used for each and every experiment to determine transfection efficiency.

RNA siRNA / RNAi /miRNA transfection Human Cells A549 & LTEP-a-2 Lipofectamine

The RNA interference (RNAi) is used to inhibit gene expression or translation, by neutralizing targeted mRNA molecules. Two types of RNA molecules such as microRNA (miRNA) and small interfering RNA (siRNA) play a central role in RNAi. Few points have to considered to increase the transfection efficiency of siRNA. Always use healthy, actively dividing cells to maximize transfection efficiency. The confluency of cells should be between 50-70%. Always use the most appropriate siRNA concentration to avoid off-target effects and unwanted toxic side effects. Positive and negative controls should be used for each and every experiment to determine transfection efficiency.

RNA siRNA / RNAi /miRNA transfection Rat H9c2 Cationic and neutral lipids

The RNA interference (RNAi) is used to inhibit gene expression or translation, by neutralizing targeted mRNA molecules. Two types of RNA molecules such as microRNA (miRNA) and small interfering RNA (siRNA) play a central role in RNAi. Few points have to considered to increase the transfection efficiency of siRNA. Always use healthy, actively dividing cells to maximize transfection efficiency. The confluency of cells should be between 50-70%. Always use the most appropriate siRNA concentration to avoid off-target effects and unwanted toxic side effects. Positive and negative controls should be used for each and every experiment to determine transfection efficiency.

RNA siRNA / RNAi /miRNA transfection Rat C6 Cationic lipid based

The RNA interference (RNAi) is used to inhibit gene expression or translation, by neutralizing targeted mRNA molecules. Two types of RNA molecules such as microRNA (miRNA) and small interfering RNA (siRNA) play a central role in RNAi. Few points have to considered to increase the transfection efficiency of siRNA. Always use healthy, actively dividing cells to maximize transfection efficiency. The confluency of cells should be between 50-70%. Always use the most appropriate siRNA concentration to avoid off-target effects and unwanted toxic side effects. Positive and negative controls should be used for each and every experiment to determine transfection efficiency.

RNA siRNA / RNAi /miRNA transfection Rat A-10 Cationic lipid based

The RNA interference (RNAi) is used to inhibit gene expression or translation, by neutralizing targeted mRNA molecules. Two types of RNA molecules such as microRNA (miRNA) and small interfering RNA (siRNA) play a central role in RNAi. Few points have to considered to increase the transfection efficiency of siRNA. Always use healthy, actively dividing cells to maximize transfection efficiency. The confluency of cells should be between 50-70%. Always use the most appropriate siRNA concentration to avoid off-target effects and unwanted toxic side effects. Positive and negative controls should be used for each and every experiment to determine transfection efficiency.

RNA siRNA / RNAi /miRNA transfection Rat IEC Cationic lipid based

Flow cytometry is an immunophenotyping technique whereby sing cell suspensions are stained for either cell surface markers or intracellular proteins by fluorescently-labelled antibodies and analyzed with a flow cytometer, where fluorescently-labelled molecules are excited by the laser to emit light at varying wavelengths, which is then detected by the instrument. There are several key criteria which are required to be kept in mind while designing a flow experiment- 1. Antibody titration (optimal dilution of antibodies should be calculated in order to avoid over- or under- saturated signals for proper detection of surface and intracellular markers), 2. Precision (3 or more replicates of the sample should be used per experiment), 3. Specificity (proper isotype controls should be included in the experiment), 4. Day-to-day variability (experiments should be repeated 3 or more times to ensure consistency and avoid variability due to flow cytometer settings), 5. Antibody interaction (Fluorescence minus one or FMO should be used, which is the comparison of signals from panel minus one antibody vs. the full panel), and 6. Antibody stability (fluorescently-labelled antibodies should be stored at 4C).

Proteins Flow cytometry Anti-bodies Mouse CD8a

Get tips on using MISSION® pLKO.1-puro Non-Mammalian shRNA Control Transduction Particles to perform shRNA gene silencing Human - Islets of langerhans Negative control (scrambled) lentiviral particles

Products Sigma-Aldrich MISSION® pLKO.1-puro Non-Mammalian shRNA Control Transduction Particles

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms