rna-isolation-purification-cells-primary-rat-cortical-neurons

- Found 9065 results

Get tips on using TRIzol Reagent to perform RNA isolation / purification Bacteria - Gram negative Helicobacter pylori

Products Thermo Fisher Scientific TRIzol Reagent

Stem cells have the unique ability to self-renew or differentiate themselves into various cell types in response to appropriate signals. These cells are especially important for tissue repair, regeneration, replacement, or in the case of hematopoietic stem cells (HSCs) to differentiate into various myeloid populations. Appropriate signals refer to the growth factor supplements or cytokines that mediate differentiation of various stem cells into the required differentiated form. For instance, HSCs can be differentiated into dendritic cells (with IL-4 and GM-CSF), macrophages (with m-CSF) and MDSCs (with IL-6 and GM-CSF). Human pluripotent stem cells (hPSCs) and induced pluripotent stem cells (iPSCs) can be first cultured in neural differentiation media (GSK3š›ƒ-i, TGFš›ƒ-i, AMPK-i, hLIF) to form neural rosettes, which can be differentiated into neural or glial progenitors (finally differentiated into oligodendrocytes). Neural progenitors can be finally differentiated into glutaminergic (dibytyryl cAMP, ascorbic acid) and dopaminergic (SHH, FGF-8, BDNF, GDNF, TGF-š›ƒ3) neurons. Thus, it is important to first identify the self-renewing cell line: its source and its final differentiation state, followed by the supplements and cytokines required for the differentiation, and final use. Timelines are another thing that is considered. For instance, it takes 7-10 days to form neural rosettes from iPSCs and 3 days to differentiate neural progenitors to neurons. Finally, the stability for stem cell culture media varies. It is advised to make fresh media every time when differentiating HSCs to myeloid populations, whereas neural differentiation media may remain stable for two weeks when stored in dark between 2-8C.

Cell culture media Stem cell Differentiation media Glioma differentiation into Human Neuronal lineage

Get tips on using TRI ReagentĀ® MRC to perform RNA isolation / purification Tissue - Human Placenta

Products Molecular Research Center, Inc. TRI ReagentĀ® MRC

Get tips on using TRI ReagentĀ® Sigma to perform RNA isolation / purification Yeast - Schizosaccharomyces pombe

Products Sigma-Aldrich TRI ReagentĀ® Sigma

Get tips on using TRI ReagentĀ® MRC to perform RNA isolation / purification Yeast - Coprinus cinereus

Products Molecular Research Center, Inc. TRI ReagentĀ® MRC

Get tips on using TRI ReagentĀ® Sigma to perform RNA isolation / purification Tissue - Mouse Tongue

Products Sigma-Aldrich TRI ReagentĀ® Sigma

Get tips on using TRI ReagentĀ® Sigma to perform RNA isolation / purification Tissue - Human Ovaries

Products Sigma-Aldrich TRI ReagentĀ® Sigma

Get tips on using TRI ReagentĀ® Sigma to perform RNA isolation / purification Tissue - Human Muscles

Products Sigma-Aldrich TRI ReagentĀ® Sigma

Get tips on using TRI ReagentĀ® Sigma to perform RNA isolation / purification Tissue - Human Joints

Products Sigma-Aldrich TRI ReagentĀ® Sigma

TUNEL assay is the cell death detection method where the biochemical marker of apoptosis is DNA fragmentation. The assay involves the microscopical detection of generated DNA fragments with free 3'-hydroxyl residues. in apoptotic cells using enzyme terminal deoxynucleotidyl transferase (TdT) which adds biotinylated nucleotides at the site of DNA breaks. Major challenges of this method involve proper access of the enzyme which could be hampered by poor permeabilization and/or excessive fixation with cross-linking fixative (common with archival tissue). This issue can be resolved by optimizing the incubation time with Proteinase K or CytoninTM.

Cellular assays TUNEL assay cell type Rat fibroblast-like synoviocytes

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms