siRNA / miRNA gene silencing Human CRL-5915

- Found 9226 results

Get tips on using Secrete-Pair™ Dual Luminescence Assay Kit to perform Reporter gene assay β-galactosidase substrates - HUVEC

Products GeneCopoeia Secrete-Pair™ Dual Luminescence Assay Kit

Get tips on using STEMdiff™ SMADi Neural Induction Kit to perform Stem cell Differentiation media Differentiation of Human iPSC into Human Neuroepithelial cells

Products STEMCELL technologies STEMdiff™ SMADi Neural Induction Kit

Get tips on using Cellular Senescence Flow Cytometry Assay to perform Reporter gene assay β-galactosidase substrates - rat mesenchymal stem cells (MSCs)

Products Cell Biolabs Cellular Senescence Flow Cytometry Assay

Get tips on using CytoSelect™ 24-Well Wound Healing Assay to perform Wound healing assay cell type - human gHMVEC (glioma human microvascular endothelial cells)

Products Cell Biolabs CytoSelect™ 24-Well Wound Healing Assay

Get tips on using AmpFLSTR™ Identifiler™ Direct PCR Amplification Kit to perform Cell line authentication Human iPSC cells derived from human dermal fibroblasts

Products Thermo Fisher Scientific AmpFLSTR™ Identifiler™ Direct PCR Amplification Kit

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have been greatly used for studies on embryonic development and cell differentiation.iPSCs provide a stable source for either self-renewal or differentiation into suitable cells when cultured in a particular environment. Pluripotent cell culture was originally started by deriving cells from inner cell mass (ICM) from pre-implanted blastocysts, these were called embryonic stem cells. These cells after isolation can be grown on traditional extracellular matrices (like mouse embryonic fibroblasts, MEFs) or feeder-free culture systems. DMEM/F12 has been the most commonly used basal media in the culture of pluripotent cells. These cells are cultured at normal atmospheric oxygen levels, 21%, however, some studies have proposed that 4% oxygen tension may be better for hESC growth. Higher D-glucose concentration (4.2g/l) and osmolarity (320mOsm) that mimics the natural environment of embryonic tissue are optimal for the growth of hESCs. Supplements like N2 and/or B-27, in the presence of growth factors like bFGF, have been shown to increase pluripotency of these cells. bFGF, FGF2 and other ligands of receptor tyrosine kinases like IGF are also required or maintain self-renewal ability of these cells. TGF𝛃1, by its activation of SMAD2/3 signalling, also represses differentiation of iPSCs. Other compounds like ROCK inhibitors reduce blebbing and apoptosis in these cells to maintain their clonogenicity. However, an inhibitor for LIF (leukaemia inhibitory factor, which is one of the pluripotent genes) has an opposing effect. Therefore, it is important to understand the culture conditions and media composition that affect downstream signalling in hESCs or iPSCs that may lead to their differentiation.

Cell culture media Stem cell culture media h-medial pallium induction and culture

Get tips on using Beta-Glo® Assay System to perform Reporter gene assay β-galactosidase substrates - rat mesenchymal stem cells (MSCs)

Products Promega Beta-Glo® Assay System

Get tips on using Senescence β-Galactosidase Staining Kit - Beyotime to perform Reporter gene assay β-galactosidase substrates - mouse pancreatic stellate cells

Products Beyotime Senescence β-Galactosidase Staining Kit - Beyotime

Get tips on using Luminescent β-galactosidase Detection Kit II to perform Reporter gene assay β-galactosidase substrates - mouse mesenchymal stem cells

Products Takara Bio Inc Luminescent β-galactosidase Detection Kit II

Get tips on using Senescence β-Galactosidase Staining Kit - Beyotime to perform Reporter gene assay β-galactosidase substrates - HeLa cervical cancer cells

Products Beyotime Senescence β-Galactosidase Staining Kit - Beyotime

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms