Site Directed Mutagenesis (SDM) Mouse Deletion 3T3-L1

- Found 6019 results

A gross majority of classical apoptotic attributes can be quantitatively examined by flow cytometry, the preferred platform for rapid assessment of multiple cellular attributes at a single-cell level. However, sample preparation for such flow cytometry-based techniques could be challenging. Cell harvesting by trypsinization, mechanical or enzymatic cell disaggregation from tissues, extensive centrifugation steps, may all lead to preferential loss of apoptotic cells. To overcome this strictly follow manufacturers instruction of the detection kit.

Cellular assays Apoptosis assay cell type PA-1

Get tips on using SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads) #9003 to perform ChIP Human - SMMC-7721

Products Cell Signaling Technology SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads) #9003

Isolating RNA from tissues and paraffin-embedded tissue samples can be challenging due to cross-linking of biomolecules and fragmented nucleic acids. The best solution is to slice the tissues into smaller pieces and make a homogenate solution (using tissue homogenizer or grinding liquid nitrogen frozen samples) in presence of RNAse inhibitors. The homogenization process should be carried out on dry ice to maintain the integrity of RNA.

RNA RNA isolation / purification Tissue Human Seminal vesicles

Get tips on using IMAGEN™ Respiratory Virus Screen Kit using Direct Immunofluorescence Assay to perform Cell Culture Contamination Detection Kit Virus

Products Thermo Fisher Scientific IMAGEN™ Respiratory Virus Screen Kit using Direct Immunofluorescence Assay

Get tips on using IMAGEN™ Parainfluenza Virus Group Kit using Direct Immunofluorescence Assay to perform Cell Culture Contamination Detection Kit Virus

Products Thermo Fisher Scientific IMAGEN™ Parainfluenza Virus Group Kit using Direct Immunofluorescence Assay

Get tips on using IMAGEN™ Respiratory Syncytial Virus Kit (RSV) using Direct Immunofluorescence Assay to perform Cell Culture Contamination Detection Kit Virus

Products Thermo Fisher Scientific IMAGEN™ Respiratory Syncytial Virus Kit (RSV) using Direct Immunofluorescence Assay

Get tips on using IMAGEN™ Influenza Virus A and B Kit using Direct Immunofluorescence Assay to perform Cell Culture Contamination Detection Kit Virus

Products Thermo Fisher Scientific IMAGEN™ Influenza Virus A and B Kit using Direct Immunofluorescence Assay

Contamination can affect cell characteristics, i.e., growth, metabolism, and morphology leading to unreliable and erroneous experimental data. Depending on the source of contaminants, one can detect contamination by using a light microscope, gram stain, isothermal amplification, or PCR. Bacteria and fungi can usually be identified by optical microscopy. Mycoplasma in cell cultures cannot be detected visually. Hence, these microbes can go unnoticed for long periods and are determined using dedicated assays. Early and rapid identification of contaminants is vital to detect, handle and prevent contamination for good cell-culture practices. However, detection and identification can be challenging and tricky based on usual visual identifications. Hence it is essential to use a standard contamination detection kit to detect and maintain best practices.

Cellular assays Cell Culture Contamination Detection Kit Mycoplasma

Contamination can affect cell characteristics, i.e., growth, metabolism, and morphology leading to unreliable and erroneous experimental data. Depending on the source of contaminants, one can detect contamination by using a light microscope, gram stain, isothermal amplification, or PCR. Bacteria and fungi can usually be identified by optical microscopy. Mycoplasma in cell cultures cannot be detected visually. Hence, these microbes can go unnoticed for long periods and are determined using dedicated assays. Early and rapid identification of contaminants is vital to detect, handle and prevent contamination for good cell-culture practices. However, detection and identification can be challenging and tricky based on usual visual identifications. Hence it is essential to use a standard contamination detection kit to detect and maintain best practices.

Cellular assays Cell Culture Contamination Detection Kit Bacteria

Contamination can affect cell characteristics, i.e., growth, metabolism, and morphology leading to unreliable and erroneous experimental data. Depending on the source of contaminants, one can detect contamination by using a light microscope, gram stain, isothermal amplification, or PCR. Bacteria and fungi can usually be identified by optical microscopy. Mycoplasma in cell cultures cannot be detected visually. Hence, these microbes can go unnoticed for long periods and are determined using dedicated assays. Early and rapid identification of contaminants is vital to detect, handle and prevent contamination for good cell-culture practices. However, detection and identification can be challenging and tricky based on usual visual identifications. Hence it is essential to use a standard contamination detection kit to detect and maintain best practices.

Cellular assays Cell Culture Contamination Detection Kit Fungi

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms