Site Directed Mutagenesis (SDM) Mouse Point mutation C2C12

- Found 5635 results

Get tips on using Stealth siRNA(r)_BIRC3 to perform siRNA / miRNA gene silencing Rat - B35 cIAP2/BIRC3

Products Thermo Fisher Scientific Stealth siRNA(r)_BIRC3

Get tips on using Stealth siRNA™ NOTCH2 to perform siRNA / miRNA gene silencing Human - THP-1 NOTCH2

Products Thermo Fisher Scientific Stealth siRNA™ NOTCH2

Get tips on using Stealth siRNA™ NOTCH1 to perform siRNA / miRNA gene silencing Human - THP-1 NOTCH1

Products Thermo Fisher Scientific Stealth siRNA™ NOTCH1

Get tips on using Gibco™ StemPro™ hESC SFM to perform Stem cell Differentiation media hiPSCs or hESCs differentiation to Embryoid body (EB)

Products Thermo Fisher Scientific Gibco™ StemPro™ hESC SFM

Get tips on using Stealth siRNA(r)_Mmp15 to perform siRNA / miRNA gene silencing Rat - C6 (rat glioma) mmp15

Products Thermo Fisher Scientific Stealth siRNA(r)_Mmp15

Get tips on using Stealth siRNA(r)_Ctnnb1 to perform siRNA / miRNA gene silencing Rat - NPC β-Catenin/Ctnnb1

Products Thermo Fisher Scientific Stealth siRNA(r)_Ctnnb1

Get tips on using stealth siRNA GIRK1/KCNJ3 to perform siRNA / miRNA gene silencing Human - MDA-MB-453 GIRK1/KCNJ3

Products Thermo Fisher Scientific stealth siRNA GIRK1/KCNJ3

Get tips on using stealth siRNA GIRK1/KCNJ3 to perform siRNA / miRNA gene silencing Human - MDA-MB-231 GIRK1/KCNJ3

Products Thermo Fisher Scientific stealth siRNA GIRK1/KCNJ3

RNAi or RNA interference is a common method to suppress gene expression in vitro/in vivo by utilizing the inherent microRNA machinery, without introducing a total gene knockout. miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid-mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time-consuming, but provide a more permanent expression of RNAi in the cells and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines.

RNA siRNA / RNAi /miRNA transfection Rat IEC-6 Cationic lipid based

RNAi or RNA interference is a common method to suppress gene expression in vitro/in vivo by utilizing the inherent microRNA machinery, without introducing a total gene knockout. miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid-mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time-consuming, but provide a more permanent expression of RNAi in the cells and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines.

RNA siRNA / RNAi /miRNA transfection Human Cells HT-1376 GLUT1

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms