shRNA gene silencing Mouse Prostate cancer cell lines (DU145 and PC3) CD24

- Found 9740 results

Generally it has been difficult to isolate high-quality RNA from yeast because of problems disrupting the cells. Use of enzymes to disrupt cell wall can alter gene expression profiles. Therefore, physical disruption can result in high quality RNA for all downstream processing. Use of DNAse and proteinase K will remove traces of DNA contamination and proteins respectively.

RNA RNA isolation / purification Yeast Ashbya gossypii

Generally it has been difficult to isolate high-quality RNA from yeast because of problems disrupting the cells. Use of enzymes to disrupt cell wall can alter gene expression profiles. Therefore, physical disruption can result in high quality RNA for all downstream processing. Use of DNAse and proteinase K will remove traces of DNA contamination and proteins respectively.

RNA RNA isolation / purification Yeast Aspergillus nidulans

Generally it has been difficult to isolate high-quality RNA from yeast because of problems disrupting the cells. Use of enzymes to disrupt cell wall can alter gene expression profiles. Therefore, physical disruption can result in high quality RNA for all downstream processing. Use of DNAse and proteinase K will remove traces of DNA contamination and proteins respectively.

RNA RNA isolation / purification Yeast Candida albicans

Generally it has been difficult to isolate high-quality RNA from yeast because of problems disrupting the cells. Use of enzymes to disrupt cell wall can alter gene expression profiles. Therefore, physical disruption can result in high quality RNA for all downstream processing. Use of DNAse and proteinase K will remove traces of DNA contamination and proteins respectively.

RNA RNA isolation / purification Yeast Cryptococcus neoformans

Generally it has been difficult to isolate high-quality RNA from yeast because of problems disrupting the cells. Use of enzymes to disrupt cell wall can alter gene expression profiles. Therefore, physical disruption can result in high quality RNA for all downstream processing. Use of DNAse and proteinase K will remove traces of DNA contamination and proteins respectively.

RNA RNA isolation / purification Yeast Neurospora crassa

Generally it has been difficult to isolate high-quality RNA from yeast because of problems disrupting the cells. Use of enzymes to disrupt cell wall can alter gene expression profiles. Therefore, physical disruption can result in high quality RNA for all downstream processing. Use of DNAse and proteinase K will remove traces of DNA contamination and proteins respectively.

RNA RNA isolation / purification Yeast Pichia pastoris

Generally it has been difficult to isolate high-quality RNA from yeast because of problems disrupting the cells. Use of enzymes to disrupt cell wall can alter gene expression profiles. Therefore, physical disruption can result in high quality RNA for all downstream processing. Use of DNAse and proteinase K will remove traces of DNA contamination and proteins respectively.

RNA RNA isolation / purification Yeast Schizophyllum commune

Generally it has been difficult to isolate high-quality RNA from yeast because of problems disrupting the cells. Use of enzymes to disrupt cell wall can alter gene expression profiles. Therefore, physical disruption can result in high quality RNA for all downstream processing. Use of DNAse and proteinase K will remove traces of DNA contamination and proteins respectively.

RNA RNA isolation / purification Yeast Schizosaccharomyces pombe

Generally it has been difficult to isolate high-quality RNA from yeast because of problems disrupting the cells. Use of enzymes to disrupt cell wall can alter gene expression profiles. Therefore, physical disruption can result in high quality RNA for all downstream processing. Use of DNAse and proteinase K will remove traces of DNA contamination and proteins respectively.

RNA RNA isolation / purification Yeast Ustilago maydis

As autophagy is a multi-step process which includes not just the formation of autophagosomes, but most importantly, flux through the entire system, including the degradation upon fusion with lysosomes, which makes it quite challenging for detection. There are several methods for detection in mammalian cells, including immunoblotting analysis of LC3 and p62 and detection of autophagosome formation/maturation by fluorescence microscopy, Currently, there is no single “gold standard” for determining the autophagic activity that is applicable in every experimental context, hence it is recommended to go for the combined use of multiple methods to accurately assess the autophagic activity in any given biological setting.

Cellular assays Autophagy assay cell type Fibroblast cell

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms