Protein expression and purification Insect cells Hi5

- Found 9514 results

Stem cells have the unique ability to self-renew or differentiate themselves into various cell types in response to appropriate signals. These cells are especially important for tissue repair, regeneration, replacement, or in the case of hematopoietic stem cells (HSCs) to differentiate into various myeloid populations. Appropriate signals refer to the growth factor supplements or cytokines that mediate differentiation of various stem cells into the required differentiated form. For instance, HSCs can be differentiated into dendritic cells (with IL-4 and GM-CSF), macrophages (with m-CSF) and MDSCs (with IL-6 and GM-CSF). Human pluripotent stem cells (hPSCs) and induced pluripotent stem cells (iPSCs) can be first cultured in neural differentiation media (GSK3𝛃-i, TGF𝛃-i, AMPK-i, hLIF) to form neural rosettes, which can be differentiated into neural or glial progenitors (finally differentiated into oligodendrocytes). Neural progenitors can be finally differentiated into glutaminergic (dibytyryl cAMP, ascorbic acid) and dopaminergic (SHH, FGF-8, BDNF, GDNF, TGF-𝛃3) neurons. Thus, it is important to first identify the self-renewing cell line: its source and its final differentiation state, followed by the supplements and cytokines required for the differentiation, and final use. Timelines are another thing that is considered. For instance, it takes 7-10 days to form neural rosettes from iPSCs and 3 days to differentiate neural progenitors to neurons. Finally, the stability for stem cell culture media varies. It is advised to make fresh media every time when differentiating HSCs to myeloid populations, whereas neural differentiation media may remain stable for two weeks when stored in dark between 2-8C.

Cell culture media Stem cell Differentiation media hiPSCs or hPSCs differentiation into trophoblasts

Get tips on using Enzo BioArray™ Single-Round RNA Amplification and Biotin Labeling System to perform Microarray RNA amplification & Labeling - Rhesus monkey brain tissue Biotin

Products Enzo Life Sciences Enzo BioArray™ Single-Round RNA Amplification and Biotin Labeling System

DNA-protein interactions are studied by using ChIP. The basic steps in this technique are crosslinking, sonication, immunoprecipitation, and analysis of the immunoprecipitated DNA. During ChIP, if chromatin is under-fragmented or fragments are too large which can lead to the increased background and lower resolution. Shorter cross-linking times (5-10 min) and/or lower formaldehyde concentrations (<1%) may improve shearing efficiency. If Chromatin is over-fragmented, then optimize shearing conditions for each cell type to improve ChIP efficiency. Over-sonication of chromatin may disrupt chromatin integrity and denature antibody epitopes. If you do not see any product or very little product in the input PCR reactions, add 5–10 μg chromatin per IP.

Proteins ChIP Mouse MLL-AF9/NrasG12D AML

Get tips on using IMAGEN™ Influenza Virus A and B Kit using Direct Immunofluorescence Assay to perform Cell Culture Contamination Detection Kit Virus

Products Thermo Fisher Scientific IMAGEN™ Influenza Virus A and B Kit using Direct Immunofluorescence Assay

RNA-Seq is a method to sequence RNA by applying Next Generation Sequencing (NGS). The quality of RNA is critical for the success of RNA-Seq. The integrity of RNA is measured by the RNA integrity number (RIN). RIN is computed from RNA electrophoresis and electropherogram profiles (the peak area of the 28S rRNA should be approximately twice the peak area of the 18S rRNA). If you get the RIN value lower than 7, the possibility of getting the low quality of RNA-seq data is high. To get a high quality RNA, it is better to work with fresh samples or snap-freeze the tissues in liquid nitrogen as quickly as possible and store them at -80°C until further use. Make sure designated areas and all your filter tips, microfuge tubes, plastic, and glassware are RNase-free.

RNA RNA sequencing Human Glioblastoma stem-like cells (GSCs)

Get tips on using Enzo BioArray™ Single-Round RNA Amplification and Biotin Labeling System to perform Microarray Rhesus monkey - Brain tissue Target preparation (RNA amplification + labeling)

Products Enzo Life Sciences Enzo BioArray™ Single-Round RNA Amplification and Biotin Labeling System

Get tips on using Enzo BioArray™ Single-Round RNA Amplification and Biotin Labeling System to perform RNA amplification & labeling Mammalian - RNA, rhesus monkey brain tissue Biotin

Products Enzo Life Sciences Enzo BioArray™ Single-Round RNA Amplification and Biotin Labeling System

ROS has a very short half-lives in biological environment as they are influenced by exposure to ambient oxygen. As it is highly reactive and hard to measure care should be taken to ensure the stability of the sample during isolation, preparation, storage, and analysis.

Cellular assays ROS assay cell type A549 human adenocarcinomic human alveolar basal epithelial cells

Get tips on using mirVana™ miRNA Isolation Kit, with phenol to perform RNA isolation / purification Cells - primary human pulmonary artery smooth muscle cells

Products Thermo Fisher Scientific mirVana™ miRNA Isolation Kit, with phenol

Get tips on using VWR Life Science RiboZol™ RNA Extraction Reagent to perform RNA isolation / purification Cells - primary rat brain microvascular endothelial cells

Products VWR VWR Life Science RiboZol™ RNA Extraction Reagent

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms