sirna-rnai-mirna-transfection-human-hela-lipofectamine

- Found 6257 results

Get tips on using EZ-Magna ChIP™ A/G Chromatin Immunoprecipitation Kit to perform ChIP Human - PBMC

Products Merck Millipore EZ-Magna ChIP™ A/G Chromatin Immunoprecipitation Kit

Get tips on using SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads) #9003 to perform ChIP Human - HUVEC

Products Cell Signaling Technology SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads) #9003

Get tips on using SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads) #9003 to perform ChIP Human - T47D

Products Cell Signaling Technology SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads) #9003

The formation of DNA from an RNA template using reverse transcription leads to the formation of double-stranded complementary DNA or cDNA. The challenges with this process include 1. Maintaining the integrity of RNA, 2. Hairpin loops or other secondary structures formed by single-stranded RNA can also affect cDNA synthesis, and 3. DNA-RNA hybrids, which may result when the first strand of cDNA is formed. For the first challenge, using workflows that involve proper isolation and storage of RNA, and maintaining a nuclease-free environment helps obtain RNA with ideal 260/230 ratios. Using a reverse transcriptase that can tolerate high temperatures (50-55oC), overcomes obstacles imposed by secondary RNA structures. Finally, RNase H has the ability to hydrolyze RNA before the formation of a second cDNA strand. It is important to ensure that RNase H activity is optimal because higher RNase H activity leads to premature degradation of the RNA template. Many reverse transcriptases offer built-in RNase H activity.

RNA cDNA synthesis Tissue

The formation of DNA from an RNA template using reverse transcription leads to the formation of double-stranded complementary DNA or cDNA. The challenges with this process include 1. Maintaining the integrity of RNA, 2. Hairpin loops or other secondary structures formed by single-stranded RNA can also affect cDNA synthesis, and 3. DNA-RNA hybrids, which may result when the first strand of cDNA is formed. For the first challenge, using workflows that involve proper isolation and storage of RNA, and maintaining a nuclease-free environment helps obtain RNA with ideal 260/230 ratios. Using a reverse transcriptase that can tolerate high temperatures (50-55oC), overcomes obstacles imposed by secondary RNA structures. Finally, RNase H has the ability to hydrolyze RNA before the formation of a second cDNA strand. It is important to ensure that RNase H activity is optimal because higher RNase H activity leads to premature degradation of the RNA template. Many reverse transcriptases offer built-in RNase H activity.

RNA cDNA synthesis Cell lines

The formation of DNA from an RNA template using reverse transcription leads to the formation of double-stranded complementary DNA or cDNA. The challenges with this process include 1. Maintaining the integrity of RNA, 2. Hairpin loops or other secondary structures formed by single-stranded RNA can also affect cDNA synthesis, and 3. DNA-RNA hybrids, which may result when the first strand of cDNA is formed. For the first challenge, using workflows that involve proper isolation and storage of RNA, and maintaining a nuclease-free environment helps obtain RNA with ideal 260/230 ratios. Using a reverse transcriptase that can tolerate high temperatures (50-55oC), overcomes obstacles imposed by secondary RNA structures. Finally, RNase H has the ability to hydrolyze RNA before the formation of a second cDNA strand. It is important to ensure that RNase H activity is optimal because higher RNase H activity leads to premature degradation of the RNA template. Many reverse transcriptases offer built-in RNase H activity.

RNA cDNA synthesis Yeast

Get tips on using SV Total RNA Isolation System to perform RNA isolation / purification Bacteria - Gram negative Helicobacter pylori

Products Promega SV Total RNA Isolation System

Get tips on using SV Total RNA Isolation System to perform RNA isolation / purification Cells - primary human coronary artery smooth muscle cells

Products Promega SV Total RNA Isolation System

Get tips on using GenElute™ Mammalian Total RNA Miniprep Kit to perform RNA isolation / purification Cells - primary human pancreatic stellate cells

Products Sigma-Aldrich GenElute™ Mammalian Total RNA Miniprep Kit

Get tips on using NEBNext® Ultra™ RNA Library Prep Kit for Illumina® to perform RNA sequencing Human - SH-SY5Y

Products New England BioLabs NEBNext® Ultra™ RNA Library Prep Kit for Illumina®

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms