siRNA / miRNA gene silencing Human CRL-5915

- Found 9226 results

The biggest problem in isolating RNA from gram-positive bacteria is the disruption of the cell wall. A lot of protocols employ enzymatic digestion (pretreatment) which may affect gene expression patterns of certain genes. Therefore physical disruption using beads can be a best alternative.

RNA RNA isolation / purification Bacteria Gram positive Lactobacillus amylovorus

The biggest problem in isolating RNA from gram-positive bacteria is the disruption of the cell wall. A lot of protocols employ enzymatic digestion (pretreatment) which may affect gene expression patterns of certain genes. Therefore physical disruption using beads can be a best alternative.

RNA RNA isolation / purification Bacteria Gram positive Listeria monocytogens

The biggest problem in isolating RNA from gram-positive bacteria is the disruption of the cell wall. A lot of protocols employ enzymatic digestion (pretreatment) which may affect gene expression patterns of certain genes. Therefore physical disruption using beads can be a best alternative.

RNA RNA isolation / purification Bacteria Gram positive Staphylococcus epidermidis

The biggest problem in isolating RNA from gram-positive bacteria is the disruption of the cell wall. A lot of protocols employ enzymatic digestion (pretreatment) which may affect gene expression patterns of certain genes. Therefore physical disruption using beads can be a best alternative.

RNA RNA isolation / purification Bacteria Gram positive Staphylococcus saprophycitius

The biggest problem in isolating RNA from gram-positive bacteria is the disruption of the cell wall. A lot of protocols employ enzymatic digestion (pretreatment) which may affect gene expression patterns of certain genes. Therefore physical disruption using beads can be a best alternative.

RNA RNA isolation / purification Bacteria Gram positive Streptococcus pyogenes

Generally it has been difficult to isolate high-quality RNA from yeast because of problems disrupting the cells. Use of enzymes to disrupt cell wall can alter gene expression profiles. Therefore, physical disruption can result in high quality RNA for all downstream processing. Use of DNAse and proteinase K will remove traces of DNA contamination and proteins respectively.

RNA RNA isolation / purification Yeast Cryptococcus neoformans

Generally it has been difficult to isolate high-quality RNA from yeast because of problems disrupting the cells. Use of enzymes to disrupt cell wall can alter gene expression profiles. Therefore, physical disruption can result in high quality RNA for all downstream processing. Use of DNAse and proteinase K will remove traces of DNA contamination and proteins respectively.

RNA RNA isolation / purification Yeast Neurospora crassa

Get tips on using EZ-Magna ChIP™ G - Chromatin Immunoprecipitation Kit to perform ChIP Human - Glioblastoma cell line

Products Merck Millipore EZ-Magna ChIP™ G - Chromatin Immunoprecipitation Kit

Get tips on using Mammary Epithelial Cell Growth Medium to perform 3D Cell Culture Media Human primary breast ephitelial cells-organoids

Products PromoCell Mammary Epithelial Cell Growth Medium

Get tips on using Mammary Epithelial Cell Growth Medium to perform 3D Cell Culture Media Human primary breast ephitelial cells-Mammospheres

Products PromoCell Mammary Epithelial Cell Growth Medium

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms