DNA isolation / purification

- Found 5018 results

Get tips on using CelLytic™ NuCLEAR™ Extraction Kit to perform Protein isolation Mammalian cells - Human eutopic endometrial stromal cells

Products Sigma-Aldrich CelLytic™ NuCLEAR™ Extraction Kit

Get tips on using M-PER™ Mammalian Protein Extraction Reagent to perform Protein isolation Mammalian cells - Human aortic endothelial cells

Products Thermo Fisher Scientific M-PER™ Mammalian Protein Extraction Reagent

Get tips on using PRO-PREP™ Protein Extraction Solution (C/T) to perform Protein isolation Mammalian cells - Mouse Epididymal fat

Products iNtRON Biotechnology PRO-PREP™ Protein Extraction Solution (C/T)

Get tips on using EasySep™ Human B Cell Enrichment Kit II Without CD43 Depletion to perform Cell Isolation B cell

Products STEMCELL technologies EasySep™ Human B Cell Enrichment Kit II Without CD43 Depletion

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Gene expression arrays Mouse liver tissue Cyanine-3-CTP

Get tips on using M-PER™ Mammalian Protein Extraction Reagent to perform Protein isolation Mammalian cells - SK-N-BE(2)-C

Products Thermo Fisher Scientific M-PER™ Mammalian Protein Extraction Reagent

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Gene expression arrays A-375 human melanoma Digoxigenin-11-dUTP

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Gene expression arrays Rat pancreas tissue Cyanine 3 & cyanine 5

Get tips on using Gyros IncSupplier Diversity Partner REXXIP HN BUFFER 25 ML PER VI DFS Item to perform Protein isolation Bacteria - Borrelia burgdorferi

Products Fisher Scientific Gyros IncSupplier Diversity Partner REXXIP HN BUFFER 25 ML PER VI DFS Item

Protein expression refers to the techniques in which a protein of interest is synthesized, modified or regulated in cells. The blueprints for proteins are stored in DNA which is then transcribed to produce messenger RNA (mRNA). mRNA is then translated into protein. In prokaryotes, this process of mRNA translation occurs simultaneously with mRNA transcription. In eukaryotes, these two processes occur at separate times and in separate cellular regions (transcription in nucleus and translation in cytoplasm). Recombinant protein expression utilizes cellular machinery to generate proteins, instead of chemical synthesis of proteins as it is very complex. Proteins produced from such DNA templates are called recombinant proteins and DNA templates are simple to construct. Recombinant protein expression involves transfecting cells with a DNA vector that contains the template. The cultured cells can then transcribe and translate the desired protein. The cells can be lysed to extract the expressed protein for subsequent purification. Both prokaryotic and eukaryotic protein expression systems are widely used. The selection of the system depends on the type of protein, the requirements for functional activity and the desired yield. These expression systems include mammalian, insect, yeast, bacterial, algal and cell-free. Each of these has pros and cons. Mammalian expression systems can be used for transient or stable expression, with ultra high-yield protein expression. However, high yields are only possible in suspension cultures and more demanding culture conditions. Insect cultures are the same as mammalian, except that they can be used as both static and suspension cultures. These cultures also have demanding culture conditions and may also be time consuming. Yeast cultures can produce eukaryotic proteins and are scalable, with minimum culture requirements. Yeast cultures may require growth culture optimization. Bacterial cultures are simple, scalable and low cost, but these may require protein specific optimization and are not suitable for all mammalian proteins. Algal cultures are optimized for robust selection and expression, but these are less developed than other host platforms. Cell-free systems are open, free of any unnatural compounds, fast and simple. This system is however, not optimal for scaling up.

Proteins Protein Expression Prokaryotic cells E. coli LPcin-YK3

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms