Flowcytometry CD3

- Found 855 results

Get tips on using CD184 (CXCR4) Monoclonal Antibody (2B11), Biotin, eBioscience™ to perform Flow cytometry Anti-bodies Mouse - CD184/CXCR4

Products eBioscience CD184 (CXCR4) Monoclonal Antibody (2B11), Biotin, eBioscience™

Get tips on using Alexa Fluor® 488 Rat Anti-Mouse CD146 to perform Flow cytometry Anti-bodies Mouse - CD146/MCAM

Products BD Biosciences Alexa Fluor® 488 Rat Anti-Mouse CD146

Get tips on using Human ICAM-1/CD54 Allele-specific Quantikine ELISA Kit to perform ELISA Human - ICAM-1/CD54

Products R&D Systems Human ICAM-1/CD54 Allele-specific Quantikine ELISA Kit

The formation of DNA from an RNA template using reverse transcription leads to the formation of double-stranded complementary DNA or cDNA. The challenges with this process include 1. Maintaining the integrity of RNA, 2. Hairpin loops or other secondary structures formed by single-stranded RNA can also affect cDNA synthesis, and 3. DNA-RNA hybrids, which may result when the first strand of cDNA is formed. For the first challenge, using workflows that involve proper isolation and storage of RNA, and maintaining a nuclease-free environment helps obtain RNA with ideal 260/230 ratios. Using a reverse transcriptase that can tolerate high temperatures (50-55oC), overcomes obstacles imposed by secondary RNA structures. Finally, RNase H has the ability to hydrolyze RNA before the formation of a second cDNA strand. It is important to ensure that RNase H activity is optimal because higher RNase H activity leads to premature degradation of the RNA template. Many reverse transcriptases offer built-in RNase H activity.

RNA cDNA synthesis Tissue

The formation of DNA from an RNA template using reverse transcription leads to the formation of double-stranded complementary DNA or cDNA. The challenges with this process include 1. Maintaining the integrity of RNA, 2. Hairpin loops or other secondary structures formed by single-stranded RNA can also affect cDNA synthesis, and 3. DNA-RNA hybrids, which may result when the first strand of cDNA is formed. For the first challenge, using workflows that involve proper isolation and storage of RNA, and maintaining a nuclease-free environment helps obtain RNA with ideal 260/230 ratios. Using a reverse transcriptase that can tolerate high temperatures (50-55oC), overcomes obstacles imposed by secondary RNA structures. Finally, RNase H has the ability to hydrolyze RNA before the formation of a second cDNA strand. It is important to ensure that RNase H activity is optimal because higher RNase H activity leads to premature degradation of the RNA template. Many reverse transcriptases offer built-in RNase H activity.

RNA cDNA synthesis Cell lines

The formation of DNA from an RNA template using reverse transcription leads to the formation of double-stranded complementary DNA or cDNA. The challenges with this process include 1. Maintaining the integrity of RNA, 2. Hairpin loops or other secondary structures formed by single-stranded RNA can also affect cDNA synthesis, and 3. DNA-RNA hybrids, which may result when the first strand of cDNA is formed. For the first challenge, using workflows that involve proper isolation and storage of RNA, and maintaining a nuclease-free environment helps obtain RNA with ideal 260/230 ratios. Using a reverse transcriptase that can tolerate high temperatures (50-55oC), overcomes obstacles imposed by secondary RNA structures. Finally, RNase H has the ability to hydrolyze RNA before the formation of a second cDNA strand. It is important to ensure that RNase H activity is optimal because higher RNase H activity leads to premature degradation of the RNA template. Many reverse transcriptases offer built-in RNase H activity.

RNA cDNA synthesis Yeast

Get tips on using Human IL-3R alpha /CD123 PE-conjugated Antibody to perform Flow cytometry Anti-bodies Human - CD123/IL3-R

Products R&D Systems Human IL-3R alpha /CD123 PE-conjugated Antibody

Get tips on using PE-Cy™7 Mouse Anti-Human CD123 to perform Flow cytometry Anti-bodies Human - CD123/IL3-R

Products BD Biosciences PE-Cy™7 Mouse Anti-Human CD123

Get tips on using CD206 (MMR) Monoclonal Antibody (19.2), PE-Cyanine7, eBioscience™ to perform Flow cytometry Anti-bodies Human - CD206

Products eBioscience CD206 (MMR) Monoclonal Antibody (19.2), PE-Cyanine7, eBioscience™

Get tips on using CD163 Monoclonal Antibody (eBioGHI/61 (GHI/61)), eBioscience™ to perform Flow cytometry Anti-bodies Human - CD163

Products eBioscience CD163 Monoclonal Antibody (eBioGHI/61 (GHI/61)), eBioscience™

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms