siRNA / miRNA gene silencing Human SKOV-3

- Found 5734 results

Get tips on using Click-iT™ TUNEL Alexa Fluor™ 488 Imaging Assay to perform TUNEL assay cell type - A127, U87MG, U251MG, T98G human glioblastoma cells

Products Thermo Fisher Scientific Click-iT™ TUNEL Alexa Fluor™ 488 Imaging Assay

Get tips on using Agilent DNA 1000 Kit Bioanalyzer DNA Analysis Part Number:5067-1504 to perform Cell line authentication Human lung carcinoma cell line NCI-H1299

Products Agilent Technologies Agilent DNA 1000 Kit Bioanalyzer DNA Analysis Part Number:5067-1504

Get tips on using APO-BrdU™ TUNEL Assay Kit, with Alexa Fluor™ 488 Anti-BrdU to perform DNA Damage Assay Human Skin Fibroblast Cell (FSK)

Products Thermo Fisher Scientific APO-BrdU™ TUNEL Assay Kit, with Alexa Fluor™ 488 Anti-BrdU

Get tips on using ROS-ID® Total ROS/Superoxide detection kit to perform ROS assay cell type - PLHC-1, SK-HEP-1, Hep3b, HepG2 human hepatocellular carcinoma

Products Enzo Life Sciences ROS-ID® Total ROS/Superoxide detection kit

Get tips on using OxiSelect™ Intracellular ROS Assay Kit (Green Fluorescence) to perform ROS assay cell type - PLHC-1, SK-HEP-1, Hep3b, HepG2 human hepatocellular carcinoma

Products Cell Biolabs OxiSelect™ Intracellular ROS Assay Kit (Green Fluorescence)

Get tips on using DCFDA - Cellular Reactive Oxygen Species Detection Assay Kit to perform ROS assay cell type - PLHC-1, SK-HEP-1, Hep3b, HepG2 human hepatocellular carcinoma

Products Abcam DCFDA - Cellular Reactive Oxygen Species Detection Assay Kit

Get tips on using APO-BrdU™ TUNEL Assay Kit, with Alexa Fluor™ 488 Anti-BrdU to perform TUNEL assay cell type - SK-MEL-2 human melanoma

Products Thermo Fisher Scientific APO-BrdU™ TUNEL Assay Kit, with Alexa Fluor™ 488 Anti-BrdU

Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.

Proteins Protein isolation Bacteria Vibrio cholerae

Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.

Proteins Protein isolation Bacteria Escherichia coli

Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.

Proteins Protein isolation Mammalian cells CHO-K1

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms