rna-isolation-purification-cells-primary-porcine-primary-airway-epithelial-cell

- Found 9018 results

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Gene expression arrays Human whole blood cells Biotin

Get tips on using 96-Well Cell Invasion Assay, Collagen I to perform Cell migration / Invasion cell type - MDA-MB-231

Products Cell Biolabs 96-Well Cell Invasion Assay, Collagen I

Get tips on using TruSeq Stranded mRNA to perform RNA sequencing Human - Glioblastoma stem-like cells (GSCs)

Products Illumina TruSeq Stranded mRNA

The formation of DNA from an RNA template using reverse transcription leads to the formation of double-stranded complementary DNA or cDNA. The challenges with this process include 1. Maintaining the integrity of RNA, 2. Hairpin loops or other secondary structures formed by single-stranded RNA can also affect cDNA synthesis, and 3. DNA-RNA hybrids, which may result when the first strand of cDNA is formed. For the first challenge, using workflows that involve proper isolation and storage of RNA, and maintaining a nuclease-free environment helps obtain RNA with ideal 260/230 ratios. Using a reverse transcriptase that can tolerate high temperatures (50-55oC), overcomes obstacles imposed by secondary RNA structures. Finally, RNase H has the ability to hydrolyze RNA before the formation of a second cDNA strand. It is important to ensure that RNase H activity is optimal because higher RNase H activity leads to premature degradation of the RNA template. Many reverse transcriptases offer built-in RNase H activity.

RNA cDNA synthesis Tissue

The formation of DNA from an RNA template using reverse transcription leads to the formation of double-stranded complementary DNA or cDNA. The challenges with this process include 1. Maintaining the integrity of RNA, 2. Hairpin loops or other secondary structures formed by single-stranded RNA can also affect cDNA synthesis, and 3. DNA-RNA hybrids, which may result when the first strand of cDNA is formed. For the first challenge, using workflows that involve proper isolation and storage of RNA, and maintaining a nuclease-free environment helps obtain RNA with ideal 260/230 ratios. Using a reverse transcriptase that can tolerate high temperatures (50-55oC), overcomes obstacles imposed by secondary RNA structures. Finally, RNase H has the ability to hydrolyze RNA before the formation of a second cDNA strand. It is important to ensure that RNase H activity is optimal because higher RNase H activity leads to premature degradation of the RNA template. Many reverse transcriptases offer built-in RNase H activity.

RNA cDNA synthesis Yeast

Get tips on using "Illumina ™ TotalPrep ™ RNA Amplification Kit + Bio-16-UTP (10 mM) to perform Microarray RNA amplification & Labeling - Mouse cochlaea Biotin

Products Thermo Fisher Scientific "Illumina ™ TotalPrep ™ RNA Amplification Kit + Bio-16-UTP (10 mM)

Get tips on using Guava Cell Cycle Reagent for Flow Cytometry to perform Cell cycle assay human - U20S

Products Merck Millipore Guava Cell Cycle Reagent for Flow Cytometry

Get tips on using Guava Cell Cycle Reagent for Flow Cytometry to perform Cell cycle assay human - A2780

Products Merck Millipore Guava Cell Cycle Reagent for Flow Cytometry

Get tips on using Guava Cell Cycle Reagent for Flow Cytometry to perform Cell cycle assay human - U87

Products Merck Millipore Guava Cell Cycle Reagent for Flow Cytometry

Get tips on using Guava Cell Cycle Reagent for Flow Cytometry to perform Cell cycle assay human - Jurkat

Products Merck Millipore Guava Cell Cycle Reagent for Flow Cytometry

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms