Immunohistochemistry Collagen Type VII Rabbit Human

- Found 5861 results

A restriction enzyme or restriction endonuclease is defined as a protein that recognizes a specific, short nucleotide sequence and cuts the DNA only at or near that site, known as restriction site or target sequence. The four most common types of restriction enzymes include: Type I (cleaves at sites remote from a recognition site), Type II (cleaves within or at short specific distances from a recognition site), Type III (cleave at sites a short distance from a recognition site), and Type IV (targets modified DNA- methylated, hydroxymethylated and glucosyl-hydroxymethylated DNA). The most common challenges with restriction digest include- 1. inactivation of the enzyme, 2. incomplete or no digestion, and 3. unexpected cleavage. The enzyme should always be stored at -20C and multiple freeze-thaw cycles should be avoided in order to maintain optimal activity. Always use a control DNA digestion with the enzyme to ensure adequate activity (to avoid interference due to high glycerol in the enzyme). For complete digestion, make sure that the enzyme volume is 1/10th of the total reaction volume, the optimal temperature is constantly maintained throughout the reaction, the total reaction time is appropriately calculated based on the amount of DNA to be digested, appropriate buffers should be used to ensure maximal enzymatic activity, and in case of a double digest, make sure that the two restriction sites are far enough so that the activity of one enzyme cannot interfere with the activity of the other. Star activity (or off-target cleavage) and incomplete cleavage are potential challenges which may occur due to suboptimal enzymatic conditions or inappropriate enzyme storage. To avoid these, follow the recommended guidelines for storage and reactions, and always check for the efficacy of digestion along with purification of digested products on an agarose gel.

Proteins Restriction Enzymes MlsI / MscI

A restriction enzyme or restriction endonuclease is defined as a protein that recognizes a specific, short nucleotide sequence and cuts the DNA only at or near that site, known as restriction site or target sequence. The four most common types of restriction enzymes include: Type I (cleaves at sites remote from a recognition site), Type II (cleaves within or at short specific distances from a recognition site), Type III (cleave at sites a short distance from a recognition site), and Type IV (targets modified DNA- methylated, hydroxymethylated and glucosyl-hydroxymethylated DNA). The most common challenges with restriction digest include- 1. inactivation of the enzyme, 2. incomplete or no digestion, and 3. unexpected cleavage. The enzyme should always be stored at -20C and multiple freeze-thaw cycles should be avoided in order to maintain optimal activity. Always use a control DNA digestion with the enzyme to ensure adequate activity (to avoid interference due to high glycerol in the enzyme). For complete digestion, make sure that the enzyme volume is 1/10th of the total reaction volume, the optimal temperature is constantly maintained throughout the reaction, the total reaction time is appropriately calculated based on the amount of DNA to be digested, appropriate buffers should be used to ensure maximal enzymatic activity, and in case of a double digest, make sure that the two restriction sites are far enough so that the activity of one enzyme cannot interfere with the activity of the other. Star activity (or off-target cleavage) and incomplete cleavage are potential challenges which may occur due to suboptimal enzymatic conditions or inappropriate enzyme storage. To avoid these, follow the recommended guidelines for storage and reactions, and always check for the efficacy of digestion along with purification of digested products on an agarose gel.

Proteins Restriction Enzymes SchI / MlyI

Get tips on using EpiQuik Dnmt3A Assay Kit to perform DNA methylation profiling Whole genome profiling - MCF-7, MDA-MB-453 human breast cancer

Products Epigentek EpiQuik Dnmt3A Assay Kit

Get tips on using FuGENE® HD Transfection Reagent to perform DNA transfection Mammalian cells - Primary cells Human pulmonary artery smooth muscle cells (HPASMC)

Products Promega FuGENE® HD Transfection Reagent

Get tips on using Lipofectamine® 2000 Transfection Reagent to perform DNA transfection Mammalian cells - Primary cells Human pulmonary artery smooth muscle cells (HPASMC)

Products Thermo Fisher Scientific Lipofectamine® 2000 Transfection Reagent

Get tips on using Phusion Site-Directed Mutagenesis Kit to perform Site Directed Mutagenesis (SDM) Human - Deletion MDA-MB-231 sodium channel β1 subunit

Products Thermo Fisher Scientific Phusion Site-Directed Mutagenesis Kit

Get tips on using DMEM/F-12, no phenol red to perform 3D Cell Culture Media Human breast cancer MDA-MB-231 cells-Mammospheres

Products Thermo Fisher Scientific DMEM/F-12, no phenol red

Get tips on using DMEM/F-12 PLUS Basal Medium to perform 3D Cell Culture Media Human breast cancer MDA-MB-231 cells-Mammospheres

Products Sigma-Aldrich DMEM/F-12 PLUS Basal Medium

Get tips on using Live-Dead Cell Staining Kit (BioVision) to perform Live / Dead assay mammalian cells - MDA-MB-231 human breast cancer cells

Products Biovision Live-Dead Cell Staining Kit (BioVision)

Get tips on using LIVE/DEAD™ Cell Imaging Kit to perform Live / Dead assay mammalian cells - MDA-MB-231 human breast cancer cells

Products Thermo Fisher Scientific LIVE/DEAD™ Cell Imaging Kit

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms