siRNA / miRNA gene silencing Human HCT-116

- Found 5381 results

Get tips on using MAP LC3α/β Antibody (N-20): sc-16755 to perform Autophagy assay cell type - Gaucher macrophages

Products Santa Cruz Biotechnology MAP LC3α/β Antibody (N-20): sc-16755

Get tips on using Blue Prestained Protein Marker, Broad Range (11-250 kDa) #59329 to perform Protein Ladder Prestained

Products Cell Signaling Technology Blue Prestained Protein Marker, Broad Range (11-250 kDa) #59329

Plasmid isolation is an important technique in molecular biology or any kind of genetic editing. It involves amplifying plasmids overnight by transforming them into competent bacterial cells. The desired colonies of these bacteria can then be grown in shaker cultures, at appropriate shaking speed, oxygen availability and temperature. These liquid cultures can then be ultracentrifuged to pellet the bacteria, which are then used for plasmid isolation. The bacteria are first resuspended in a buffer, then lysed, neutralized, purified in a column, eluted, precipitated with ethanol and then resuspended. During plasmid isolation, it is important to lyse cells quickly because lysing bacteria for too long may lead to irreversible denaturing of the plasmid. Usually, alkaline lysis is used for isolation because it is a mild treatment. It isolates plasmid DNA and other cell components such as proteins by breaking cells apart with an alkaline solution. Precipitation removes the proteins, and the plasmid DNA recovers with alcohol precipitation. Resuspension and lysis buffers should be mixed thoroughly in order to prevent the DNA from breaking into smaller fragments. This is because broken gDNA can reanneal and remain in the solution, without binding to the column.

DNA Plasmid Isolation Enterobacteriaceae

Get tips on using CD80 (B7-1) Monoclonal Antibody (16-10A1), APC, eBioscience™ to perform Flow cytometry Anti-bodies Mouse - CD80

Products eBioscience CD80 (B7-1) Monoclonal Antibody (16-10A1), APC, eBioscience™

Get tips on using CD80 (B7-1) Monoclonal Antibody (16-10A1), PE, eBioscience™ to perform Flow cytometry Anti-bodies Mouse - CD80

Products eBioscience CD80 (B7-1) Monoclonal Antibody (16-10A1), PE, eBioscience™

Get tips on using SurePrint G3 Mouse Exon 4x180K Microarray Kit (165,984 Exon probes) to perform Microarray Mice - Cochlea Expression array (labelled)

Products Agilent Technologies SurePrint G3 Mouse Exon 4x180K Microarray Kit (165,984 Exon probes)

Get tips on using RPMI-1640 with Phenol Red produced by FUJIFILM Wako Pure Chemical Corporation to perform Mammalian cell culture media Ku812

Products Alpha laboratories RPMI-1640 with Phenol Red produced by FUJIFILM Wako Pure Chemical Corporation

Get tips on using "Illumina ™ TotalPrep ™ RNA Amplification Kit + Bio-16-UTP (10 mM) to perform Microarray RNA amplification & Labeling - Mouse cochlaea Biotin

Products Thermo Fisher Scientific "Illumina ™ TotalPrep ™ RNA Amplification Kit + Bio-16-UTP (10 mM)

Plasmid isolation is an important technique in molecular biology or any kind of genetic editing. It involves amplifying plasmids overnight by transforming them into competent bacterial cells. The desired colonies of these bacteria can then be grown in shaker cultures, at appropriate shaking speed, oxygen availability and temperature. These liquid cultures can then be ultracentrifuged to pellet the bacteria, which are then used for plasmid isolation. The bacteria are first resuspended in a buffer, then lysed, neutralized, purified in a column, eluted, precipitated with ethanol and then resuspended. During plasmid isolation, it is important to lyse cells quickly because lysing bacteria for too long may lead to irreversible denaturing of the plasmid. Usually, alkaline lysis is used for isolation because it is a mild treatment. It isolates plasmid DNA and other cell components such as proteins by breaking cells apart with an alkaline solution. Precipitation removes the proteins, and the plasmid DNA recovers with alcohol precipitation. Resuspension and lysis buffers should be mixed thoroughly in order to prevent the DNA from breaking into smaller fragments. This is because broken gDNA can reanneal and remain in the solution, without binding to the column.

DNA Plasmid Isolation DH10Bac (Bacmid)

Plasmid isolation is an important technique in molecular biology or any kind of genetic editing. It involves amplifying plasmids overnight by transforming them into competent bacterial cells. The desired colonies of these bacteria can then be grown in shaker cultures, at appropriate shaking speed, oxygen availability and temperature. These liquid cultures can then be ultracentrifuged to pellet the bacteria, which are then used for plasmid isolation. The bacteria are first resuspended in a buffer, then lysed, neutralized, purified in a column, eluted, precipitated with ethanol and then resuspended. During plasmid isolation, it is important to lyse cells quickly because lysing bacteria for too long may lead to irreversible denaturing of the plasmid. Usually, alkaline lysis is used for isolation because it is a mild treatment. It isolates plasmid DNA and other cell components such as proteins by breaking cells apart with an alkaline solution. Precipitation removes the proteins, and the plasmid DNA recovers with alcohol precipitation. Resuspension and lysis buffers should be mixed thoroughly in order to prevent the DNA from breaking into smaller fragments. This is because broken gDNA can reanneal and remain in the solution, without binding to the column.

DNA Plasmid Isolation E. coli DH5α

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms