rna-isolation-purification-cells-primary-porcine-primary-airway-epithelial-cell

- Found 9018 results

Get tips on using MouseTRAP™ (TRAcP 5b) ELISA to perform Acid phosphatase assay cell type - murine macrophage cells

Products Immunodiagnosticsystems (ids) MouseTRAP™ (TRAcP 5b) ELISA

Get tips on using ICAfectin®442 siRNA transfection to perform DNA transfection Mammalian cells - Immortalized cell lines COS7

Products Incellart ICAfectin®442 siRNA transfection

Get tips on using ICAfectin®442 siRNA transfection to perform DNA transfection Mammalian cells - Immortalized cell lines HeLa

Products Incellart ICAfectin®442 siRNA transfection

Get tips on using TiterTACS™ Colorimetric Apoptosis Detection Kit to perform TUNEL assay cell type - Mouse endothelial cells

Products Bio-Techne TiterTACS™ Colorimetric Apoptosis Detection Kit

Get tips on using Dulbecco’s Modified Eagle’s Medium (DMEM) (1X),liquid to perform Mammalian cell culture media HSG cells

Products Welgene Dulbecco’s Modified Eagle’s Medium (DMEM) (1X),liquid

Get tips on using FITC Annexin V Apoptosis Detection Kit I to perform Apoptosis assay cell type - B-cells

Products BD Biosciences FITC Annexin V Apoptosis Detection Kit I

Get tips on using FITC Annexin V Apoptosis Detection Kit I to perform Apoptosis assay cell type - HeLa cells

Products BD Biosciences FITC Annexin V Apoptosis Detection Kit I

miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.

RNA siRNA / miRNA gene silencing Human A431 RCP/RAB11FIP1

miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.

RNA siRNA / miRNA gene silencing Human BEAS-2B RAB5C

miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.

RNA siRNA / miRNA gene silencing Human BEAS-2B RAB7A

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms