Get tips on using Magnetic mRNA Isolation Kit to perform RNA isolation / purification Tissue - Rat Pineal gland
Get tips on using PolyATtract® mRNA Isolation Systems to perform RNA isolation / purification Yeast - Coprinus cinereus
Get tips on using RNeasy 96 BioRobot 8000 Kit (12) to perform mRNA / Ribonucleoprotein isolation / purification mRNA
Get tips on using Dynabeads™ mRNA Purification Kit to perform RNA isolation / purification Tissue - Rat Adrenal glands
Get tips on using Magnetic mRNA Isolation Kit to perform RNA isolation / purification Tissue - Rat Blood / Serum / Plasma / Buffy coat
Get tips on using SENSE mRNA-Seq Library Prep Kit V2 to perform RNA sequencing Rat - Hippocampal tissue
Get tips on using MICROBExpress™ Bacterial mRNA Enrichment Kit to perform RNA isolation / purification Bacteria - Gram positive Staphylococcus aureus
Get tips on using MICROBExpress™ Bacterial mRNA Enrichment Kit to perform RNA isolation / purification Bacteria - Gram negative Pseudomonas aeruginosa
Flow cytometry is an immunophenotyping technique whereby sing cell suspensions are stained for either cell surface markers or intracellular proteins by fluorescently-labelled antibodies and analyzed with a flow cytometer, where fluorescently-labelled molecules are excited by the laser to emit light at varying wavelengths, which is then detected by the instrument. There are several key criteria which are required to be kept in mind while designing a flow experiment- 1. Antibody titration (optimal dilution of antibodies should be calculated in order to avoid over- or under- saturated signals for proper detection of surface and intracellular markers), 2. Precision (3 or more replicates of the sample should be used per experiment), 3. Specificity (proper isotype controls should be included in the experiment), 4. Day-to-day variability (experiments should be repeated 3 or more times to ensure consistency and avoid variability due to flow cytometer settings), 5. Antibody interaction (Fluorescence minus one or FMO should be used, which is the comparison of signals from panel minus one antibody vs. the full panel), and 6. Antibody stability (fluorescently-labelled antibodies should be stored at 4C).
Flow cytometry is an immunophenotyping technique whereby sing cell suspensions are stained for either cell surface markers or intracellular proteins by fluorescently-labelled antibodies and analyzed with a flow cytometer, where fluorescently-labelled molecules are excited by the laser to emit light at varying wavelengths, which is then detected by the instrument. There are several key criteria which are required to be kept in mind while designing a flow experiment- 1. Antibody titration (optimal dilution of antibodies should be calculated in order to avoid over- or under- saturated signals for proper detection of surface and intracellular markers), 2. Precision (3 or more replicates of the sample should be used per experiment), 3. Specificity (proper isotype controls should be included in the experiment), 4. Day-to-day variability (experiments should be repeated 3 or more times to ensure consistency and avoid variability due to flow cytometer settings), 5. Antibody interaction (Fluorescence minus one or FMO should be used, which is the comparison of signals from panel minus one antibody vs. the full panel), and 6. Antibody stability (fluorescently-labelled antibodies should be stored at 4C).
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment