siRNA / miRNA gene silencing Human T47-D

- Found 7773 results

An alternative to culture-based cell death detection is an assessment of other cell viability indicators using fluorescent dyes, including membrane potential and membrane integrity. Live/Dead assays differentiates live and dead cells using membrane integrity as a proxy for cell viability and are based on a fluorescent staining procedure followed by detection using flow cytometry. However, samples preparation for such flow cytometry-based techniques could be challenging. Cell harvesting by trypsinization, mechanical or enzymatic cell disaggregation from tissues, extensive centrifugation steps, may all lead to preferential loss of apoptotic cells. To overcome this strictly follow manufacturers instruction of the detection kit.

Cellular assays Live / Dead assay mammalian cells mouse bone marrow-derived macrophages

DNA isolation and purification is the first critical step in sample preparation that helps ensure optimal performance of downstream assays like PCR, microarrays, and sequencing. Failure in yielding high-quality DNA would be the major reason that DNA doesn't work for the downstream application. To circumvent this, one should follow the recommended storage conditions to minimize DNA degradation by nucleases and shouldn't overload the purification system.

DNA DNA isolation / purification Bacteria Gram positive piezophilic bacteria [AT7 and AT12 Strains]

A restriction enzyme or restriction endonuclease is defined as a protein that recognizes a specific, short nucleotide sequence and cuts the DNA only at or near that site, known as restriction site or target sequence. The four most common types of restriction enzymes include: Type I (cleaves at sites remote from a recognition site), Type II (cleaves within or at short specific distances from a recognition site), Type III (cleave at sites a short distance from a recognition site), and Type IV (targets modified DNA- methylated, hydroxymethylated and glucosyl-hydroxymethylated DNA). The most common challenges with restriction digest include- 1. inactivation of the enzyme, 2. incomplete or no digestion, and 3. unexpected cleavage. The enzyme should always be stored at -20C and multiple freeze-thaw cycles should be avoided in order to maintain optimal activity. Always use a control DNA digestion with the enzyme to ensure adequate activity (to avoid interference due to high glycerol in the enzyme). For complete digestion, make sure that the enzyme volume is 1/10th of the total reaction volume, the optimal temperature is constantly maintained throughout the reaction, the total reaction time is appropriately calculated based on the amount of DNA to be digested, appropriate buffers should be used to ensure maximal enzymatic activity, and in case of a double digest, make sure that the two restriction sites are far enough so that the activity of one enzyme cannot interfere with the activity of the other. Star activity (or off-target cleavage) and incomplete cleavage are potential challenges which may occur due to suboptimal enzymatic conditions or inappropriate enzyme storage. To avoid these, follow the recommended guidelines for storage and reactions, and always check for the efficacy of digestion along with purification of digested products on an agarose gel.

Proteins Restriction Enzymes DdeI / HpyF3I

A restriction enzyme or restriction endonuclease is defined as a protein that recognizes a specific, short nucleotide sequence and cuts the DNA only at or near that site, known as restriction site or target sequence. The four most common types of restriction enzymes include: Type I (cleaves at sites remote from a recognition site), Type II (cleaves within or at short specific distances from a recognition site), Type III (cleave at sites a short distance from a recognition site), and Type IV (targets modified DNA- methylated, hydroxymethylated and glucosyl-hydroxymethylated DNA). The most common challenges with restriction digest include- 1. inactivation of the enzyme, 2. incomplete or no digestion, and 3. unexpected cleavage. The enzyme should always be stored at -20C and multiple freeze-thaw cycles should be avoided in order to maintain optimal activity. Always use a control DNA digestion with the enzyme to ensure adequate activity (to avoid interference due to high glycerol in the enzyme). For complete digestion, make sure that the enzyme volume is 1/10th of the total reaction volume, the optimal temperature is constantly maintained throughout the reaction, the total reaction time is appropriately calculated based on the amount of DNA to be digested, appropriate buffers should be used to ensure maximal enzymatic activity, and in case of a double digest, make sure that the two restriction sites are far enough so that the activity of one enzyme cannot interfere with the activity of the other. Star activity (or off-target cleavage) and incomplete cleavage are potential challenges which may occur due to suboptimal enzymatic conditions or inappropriate enzyme storage. To avoid these, follow the recommended guidelines for storage and reactions, and always check for the efficacy of digestion along with purification of digested products on an agarose gel.

Proteins Restriction Enzymes DraI

A restriction enzyme or restriction endonuclease is defined as a protein that recognizes a specific, short nucleotide sequence and cuts the DNA only at or near that site, known as restriction site or target sequence. The four most common types of restriction enzymes include: Type I (cleaves at sites remote from a recognition site), Type II (cleaves within or at short specific distances from a recognition site), Type III (cleave at sites a short distance from a recognition site), and Type IV (targets modified DNA- methylated, hydroxymethylated and glucosyl-hydroxymethylated DNA). The most common challenges with restriction digest include- 1. inactivation of the enzyme, 2. incomplete or no digestion, and 3. unexpected cleavage. The enzyme should always be stored at -20C and multiple freeze-thaw cycles should be avoided in order to maintain optimal activity. Always use a control DNA digestion with the enzyme to ensure adequate activity (to avoid interference due to high glycerol in the enzyme). For complete digestion, make sure that the enzyme volume is 1/10th of the total reaction volume, the optimal temperature is constantly maintained throughout the reaction, the total reaction time is appropriately calculated based on the amount of DNA to be digested, appropriate buffers should be used to ensure maximal enzymatic activity, and in case of a double digest, make sure that the two restriction sites are far enough so that the activity of one enzyme cannot interfere with the activity of the other. Star activity (or off-target cleavage) and incomplete cleavage are potential challenges which may occur due to suboptimal enzymatic conditions or inappropriate enzyme storage. To avoid these, follow the recommended guidelines for storage and reactions, and always check for the efficacy of digestion along with purification of digested products on an agarose gel.

Proteins Restriction Enzymes DpnI

Contamination can affect cell characteristics, i.e., growth, metabolism, and morphology leading to unreliable and erroneous experimental data. Depending on the source of contaminants, one can detect contamination by using a light microscope, gram stain, isothermal amplification, or PCR. Bacteria and fungi can usually be identified by optical microscopy. Mycoplasma in cell cultures cannot be detected visually. Hence, these microbes can go unnoticed for long periods and are determined using dedicated assays. Early and rapid identification of contaminants is vital to detect, handle and prevent contamination for good cell-culture practices. However, detection and identification can be challenging and tricky based on usual visual identifications. Hence it is essential to use a standard contamination detection kit to detect and maintain best practices.

Cellular assays Cell Culture Contamination Detection Kit Mycoplasma

Contamination can affect cell characteristics, i.e., growth, metabolism, and morphology leading to unreliable and erroneous experimental data. Depending on the source of contaminants, one can detect contamination by using a light microscope, gram stain, isothermal amplification, or PCR. Bacteria and fungi can usually be identified by optical microscopy. Mycoplasma in cell cultures cannot be detected visually. Hence, these microbes can go unnoticed for long periods and are determined using dedicated assays. Early and rapid identification of contaminants is vital to detect, handle and prevent contamination for good cell-culture practices. However, detection and identification can be challenging and tricky based on usual visual identifications. Hence it is essential to use a standard contamination detection kit to detect and maintain best practices.

Cellular assays Cell Culture Contamination Detection Kit Bacteria

Contamination can affect cell characteristics, i.e., growth, metabolism, and morphology leading to unreliable and erroneous experimental data. Depending on the source of contaminants, one can detect contamination by using a light microscope, gram stain, isothermal amplification, or PCR. Bacteria and fungi can usually be identified by optical microscopy. Mycoplasma in cell cultures cannot be detected visually. Hence, these microbes can go unnoticed for long periods and are determined using dedicated assays. Early and rapid identification of contaminants is vital to detect, handle and prevent contamination for good cell-culture practices. However, detection and identification can be challenging and tricky based on usual visual identifications. Hence it is essential to use a standard contamination detection kit to detect and maintain best practices.

Cellular assays Cell Culture Contamination Detection Kit Fungi

Contamination can affect cell characteristics, i.e., growth, metabolism, and morphology leading to unreliable and erroneous experimental data. Depending on the source of contaminants, one can detect contamination by using a light microscope, gram stain, isothermal amplification, or PCR. Bacteria and fungi can usually be identified by optical microscopy. Mycoplasma in cell cultures cannot be detected visually. Hence, these microbes can go unnoticed for long periods and are determined using dedicated assays. Early and rapid identification of contaminants is vital to detect, handle and prevent contamination for good cell-culture practices. However, detection and identification can be challenging and tricky based on usual visual identifications. Hence it is essential to use a standard contamination detection kit to detect and maintain best practices.

Cellular assays Cell Culture Contamination Detection Kit Virus

Contamination can affect cell characteristics, i.e., growth, metabolism, and morphology leading to unreliable and erroneous experimental data. Depending on the source of contaminants, one can detect contamination by using a light microscope, gram stain, isothermal amplification, or PCR. Bacteria and fungi can usually be identified by optical microscopy. Mycoplasma in cell cultures cannot be detected visually. Hence, these microbes can go unnoticed for long periods and are determined using dedicated assays. Early and rapid identification of contaminants is vital to detect, handle and prevent contamination for good cell-culture practices. However, detection and identification can be challenging and tricky based on usual visual identifications. Hence it is essential to use a standard contamination detection kit to detect and maintain best practices.

Cellular assays Cell Culture Contamination Detection Kit Yeast

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms