siRNA / miRNA gene silencing Human Caki-2

- Found 5971 results

siRNA RBM3 Product

Get tips on using siRNA RBM3 to perform siRNA / miRNA gene silencing Human - MIA PaCa-2 RBM3

Products Thermo Fisher Scientific siRNA RBM3
siRNA RIP3 Product

Get tips on using siRNA RIP3 to perform siRNA / miRNA gene silencing Human - MIA PaCa-2 RIP3

Products Santa Cruz Biotechnology siRNA RIP3

Get tips on using ON-TARGETplus Human PLK1 (5347) siRNA - Individual to perform siRNA / miRNA gene silencing Human - MIA PaCa-2 PLK-1

Products Dharmacon ON-TARGETplus Human PLK1 (5347) siRNA - Individual

Get tips on using SignalSilence® IκBα siRNA to perform siRNA / miRNA gene silencing Human - Caco-2 IκBα

Products Cell Signaling Technology SignalSilence® IκBα siRNA

Get tips on using Arp2 siRNA (h) to perform siRNA / miRNA gene silencing Human - T47-D Arp-2

Products Santa Cruz Biotechnology Arp2 siRNA (h)

Get tips on using 14-3-3ζ siRNA(h) to perform siRNA / miRNA gene silencing Human - Caco-2 14‐3‐3ζ

Products Santa Cruz Biotechnology 14-3-3ζ siRNA(h)

Get tips on using SiRNA silencing human Eph receptor B4, Id: s243 to perform siRNA / miRNA gene silencing Human - HNSCC cell line Eph receptor B4 Polymer / Lipid

Products Thermo Fisher Scientific SiRNA silencing human Eph receptor B4, Id: s243

Get tips on using SiRNA silencing human Eph receptor B4, Id: 533 to perform siRNA / miRNA gene silencing Human - HNSCC cell line Eph receptor B4 Polymer / Lipid

Products Thermo Fisher Scientific SiRNA silencing human Eph receptor B4, Id: 533

RNAi or RNA interference is a common method to suppress gene expression in vitro/in vivo by utilizing the inherent microRNA machinery, without introducing a total gene knockout. miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid-mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time-consuming, but provide a more permanent expression of RNAi in the cells and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines.

RNA siRNA / RNAi /miRNA transfection Human Cells HT-1376 GLUT1

RNAi or RNA interference is a common method to suppress gene expression in vitro/in vivo by utilizing the inherent microRNA machinery, without introducing a total gene knockout. miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with the desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid-mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time-consuming, but provide a more permanent expression of RNAi in the cells and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines.

RNA siRNA / RNAi /miRNA transfection Human Cells HT-1376 ROCK2

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms