ROS assay cell type

- Found 7339 results

Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray RNA amplification & Labeling Fish fundulus heteroclitus Cyanine-3 / Cyanine-5

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Gene expression arrays Mouse liver tissue Cyanine-3-CTP

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Gene expression arrays A-375 human melanoma Digoxigenin-11-dUTP

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Gene expression arrays Rat pancreas tissue Cyanine 3 & cyanine 5

The estimation of DNA methylation level heavily depends on the complete conversion of non-methylated DNA cytosines. It is crucial to ensure complete conversion of non-methylated cytosines in DNA. Therefore, it is important to incorporate controls for bisulfite reactions, as well as to pay attention to the appearance of cytosines in non-CpG sites after sequencing, which is an indicator of incomplete conversion.

DNA DNA methylation profiling Whole genome profiling HCT116, HTC15 human colon cancer cells

The estimation of DNA methylation level heavily depends on the complete conversion of non-methylated DNA cytosines. It is crucial to ensure complete conversion of non-methylated cytosines in DNA. Therefore, it is important to incorporate controls for bisulfite reactions, as well as to pay attention to the appearance of cytosines in non-CpG sites after sequencing, which is an indicator of incomplete conversion.

DNA DNA methylation profiling Gene specific profiling TCP-1, BCPAP & nthy-ori 3-1 (thyroid tumor cells) METTL7A
pJAP2 Product

Get tips on using pJAP2 to perform Protein Expression Eukaryotic cells - HEK293 AT1R

Products Christopher G. Tate, MRC Laboratory of Molecular Biology, Cambri pJAP2
pJAP34 Product

Get tips on using pJAP34 to perform Protein Expression Eukaryotic cells - HEK293 A1R

Products Christopher G. Tate, MRC Laboratory of Molecular Biology, Cambri pJAP34
pJAP37 Product

Get tips on using pJAP37 to perform Protein Expression Eukaryotic cells - HEK293 A1R

Products Christopher G. Tate, MRC Laboratory of Molecular Biology, Cambri pJAP37
PL_MmXbp1s Product

Get tips on using PL_MmXbp1s to perform Protein Expression Eukaryotic cells - CHO Xbp1s

Products Helene Faustrup Kildegaard, The Novo Nordisk Foundation Center f PL_MmXbp1s

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms