In ChIP, the most vital step is the binding of an antibody and choosing the right antibody. The binding affinity of different types of immunoglobulins to protein A or G differs significantly. Henceforth, it is recommended to choose either protein A or protein G coated beads. If you do not see any product in the positive control, add 5–10 μg of chromatin and 1–5 μg of antibody to each IP reaction and incubate with antibody overnight and an additional 2 hr after adding Protein G/A beads. If no product in the experimental, add more DNA to the PCR reaction or increase the number of amplification cycles. Choose an alternate, ChIP-validated antibody if the antibody does not work.
In ChIP, the most vital step is the binding of an antibody and choosing the right antibody. The binding affinity of different types of immunoglobulins to protein A or G differs significantly. Henceforth, it is recommended to choose either protein A or protein G coated beads. If you do not see any product in the positive control, add 5–10 μg of chromatin and 1–5 μg of antibody to each IP reaction and incubate with antibody overnight and an additional 2 hr after adding Protein G/A beads. If no product in the experimental, add more DNA to the PCR reaction or increase the number of amplification cycles. Choose an alternate, ChIP-validated antibody if the antibody does not work.
In ChIP, the most vital step is the binding of an antibody and choosing the right antibody. The binding affinity of different types of immunoglobulins to protein A or G differs significantly. Henceforth, it is recommended to choose either protein A or protein G coated beads. If you do not see any product in the positive control, add 5–10 μg of chromatin and 1–5 μg of antibody to each IP reaction and incubate with antibody overnight and an additional 2 hr after adding Protein G/A beads. If no product in the experimental, add more DNA to the PCR reaction or increase the number of amplification cycles. Choose an alternate, ChIP-validated antibody if the antibody does not work.
In ChIP, the most vital step is the binding of an antibody and choosing the right antibody. The binding affinity of different types of immunoglobulins to protein A or G differs significantly. Henceforth, it is recommended to choose either protein A or protein G coated beads. If you do not see any product in the positive control, add 5–10 μg of chromatin and 1–5 μg of antibody to each IP reaction and incubate with antibody overnight and an additional 2 hr after adding Protein G/A beads. If no product in the experimental, add more DNA to the PCR reaction or increase the number of amplification cycles. Choose an alternate, ChIP-validated antibody if the antibody does not work.
Get tips on using IMAGEN™ Herpes Simplex Virus (HSV) Kit using Direct Immunofluorescence Assay to perform Cell Culture Contamination Detection Kit Virus
Get tips on using IMAGEN™ Respiratory Syncytial Virus Kit (RSV) using Direct Immunofluorescence Assay to perform Cell Culture Contamination Detection Kit Virus
Get tips on using LIVE/DEAD™ FungaLight™ Yeast Viability Kit, for flow cytometry to perform Live / Dead assay yeast - Saccharomyces cerevisiae
Get tips on using LIVE/DEAD™ FungaLight™ Yeast Viability Kit, for flow cytometry to perform Live / Dead assay yeast - Candida albicans
Get tips on using LIVE/DEAD™ Viability/Cytotoxicity Kit, for mammalian cells to perform Live / Dead assay mammalian cells - rat aortic smooth muscle cells
Get tips on using QuikChange II XL Site-Directed Mutagenesis Kit, 10 Rxn to perform Site Directed Mutagenesis (SDM) Monkey - Point mutation Cos-7 PAH
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment