Get tips on using LIVE/DEAD™ Viability/Cytotoxicity Kit, for mammalian cells to perform Live / Dead assay mammalian cells - human fibroblast tissue
Get tips on using LIVE/DEAD™ Viability/Cytotoxicity Kit, for mammalian cells to perform Live / Dead assay mammalian cells - L29 mouse fibroblast
Get tips on using MasterPure™ Complete DNA and RNA Purification Kit to perform DNA isolation / purification Cells - Immortalized cell lines C2C12
Get tips on using LIVE/DEAD™ Viability/Cytotoxicity Kit, for mammalian cells to perform Live / Dead assay mammalian cells - SH-SY5Y Human neuroblastoma
DNA isolation and purification is the first critical step in sample preparation that helps ensure optimal performance of downstream assays like PCR, microarrays, and sequencing. Failure in yielding high-quality DNA would be the major reason that DNA doesn't work for the downstream application. To circumvent this, one should follow the recommended storage conditions to minimize DNA degradation by nucleases and shouldn't overload the purification system.
Get tips on using Pierce™ BCA Protein Assay Kit to perform Protein quantification Mammalian cells - Rat vascular smooth muscle cells (vSMCs)
Get tips on using LIVE/DEAD™ Viability/Cytotoxicity Kit, for mammalian cells to perform Live / Dead assay mammalian cells - mouse bone marrow-derived macrophages
Get tips on using Pierce™ BCA Protein Assay Kit to perform Protein quantification Mammalian cells - MDA-MB-231
Get tips on using DC™ Protein Assay Kit I to perform Protein quantification Mammalian cells - MDA-MB-231
The process of RNA extraction from bacteria, in general, involves an RNA-protective, effective lysis of bacterial cell wall (which may pose difficulties). EDTA promotes loss of outer membrane to provide lysozyme with access to peptidoglycan. Another common method for cell wall lysis is mechanical disruption using a homogenizer (applied for gram-positive bacteria and some strains of gram-negative bacteria). Following lysis, it is necessary to disrupt protein-nucleic acid interactions, which can be achieved by adding sodium dodecyl sulfate (SDS). Next step involves using phenol-chloroform-isoamyl alcohol extraction, where RNA can be obtained from the bottom organic phase, the top phase consists of DNA and the interphase contains proteins. Isoamyl alcohol is an inert and optional addition to this mixture and is added as an anti-foaming reagent to reduce the interphase. Following RNA extraction, the samples should be checked for its quality by gel electrophoresis (23S and 16S rRNAs and 5s rRNA and tRNA bands) or UV spectrophotometric or fluorescence methods.
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment