DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.
Get tips on using Flp-In™ T-REx™ 293 Cell Line to perform Protein expression and purification Mammalian cells - CAL-51 BRCA1
Get tips on using Jump In™ T-REx™ HEK 293 Kit to perform Protein expression and purification Mammalian cells - HEK 293 HER2
Get tips on using DeadEnd™ Fluorometric TUNEL System to perform TUNEL assay cell type - HeLa cells human cervical cancer
Get tips on using jetPEI® DNA transfection, HTS application to perform DNA transfection Mammalian cells - Immortalized cell lines HeLa
Get tips on using Wizard® Genomic DNA Purification Kit to perform DNA isolation / purification Cells - Immortalized cell lines HeLa
Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.
Get tips on using Micro BCA™ Protein Assay Kit to perform Protein quantification Mammalian cells - Human pluripotent stem cells
Get tips on using Pierce™ BCA Protein Assay Kit to perform Protein quantification Mammalian cells - Human pluripotent stem cells
Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment