Microarray Gene expression arrays Rhesus monkey brain tissue

- Found 5261 results

Get tips on using RNeasy Lipid Tissue Mini Kit to perform RNA isolation / purification Cells - primary human vascular endothelial cells

Products Qiagen RNeasy Lipid Tissue Mini Kit

Get tips on using RNeasy Lipid Tissue Mini Kit to perform RNA isolation / purification Cells - primary bovine aortic endothelial cells

Products Qiagen RNeasy Lipid Tissue Mini Kit

Get tips on using QIAamp DNA FFPE Tissue Kit to perform DNA isolation / purification Cells - Primary cells Pseudomyxoma peritonei (PMP) cells

Products Qiagen QIAamp DNA FFPE Tissue Kit

Get tips on using pMXs-IRES-Bsd Retroviral Expression Vector to perform CRISPR Human - Repression DDX3Y

Products Cell Biolabs pMXs-IRES-Bsd Retroviral Expression Vector

Get tips on using pMXs-IRES-Bsd Retroviral Expression Vector to perform CRISPR Human - Repression DDX3X

Products Cell Biolabs pMXs-IRES-Bsd Retroviral Expression Vector

Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.

Proteins Protein isolation Tissue Human aortic endothelial cells

Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.

Proteins Protein isolation Tissue Rabbit eye retina/choroids

Get tips on using Magna ChIP™ G Tissue Kit to perform ChIP Mouse - Cardiac fibroblasts

Products Merck Millipore Magna ChIP™ G Tissue Kit

Reporter gene assays are designed to test the regulation of the expression of a gene of interest. This is usually done by linking the promoter of the gene of interest with a gene such as a firefly luciferase, which can be easily detected by addition of luciferin that leads to an enzymatic reaction to produce luminescence. The enzymatic reaction can be correlated to the expression of the gene of interest. Another luciferase gene that can be used is Renilla luciferase. For an appropriate luciferase assay: 1. the reporter should express uniformly in all cells, 2. specifically respond to effectors that the assay intends to monitor, 3. have low intrinsic stability to quickly reflect transcriptional dynamics. It is important to have an equal number of cells plated in each testing condition to avoid any incorrect readouts. Reporter assays could be single or dual reporter assays. The reporter could be both luciferases. Most dual-luciferase assays involve adding two reagents to each sample and measuring luminescence following each addition. Adding the first reagent activates the first luciferase reporter reaction; adding the second reagent extinguishes first luciferase reporter activity and initiates the second luciferase reaction. Dual-luciferase assays have some advantages, including 1. reduces variability, 2. reduces background, 3. normalizes differences in transfection efficiencies between samples.

Cellular assays Reporter gene assay β-galactosidase substrates SK-Hep-1

Get tips on using Magna ChIP™ G Tissue Kit to perform ChIP Human - MDA-MB-231

Products Merck Millipore Magna ChIP™ G Tissue Kit

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms