siRNA / miRNA gene silencing Human DU145

- Found 5141 results

When extracting nucleic acids from cell cultures, thorough homogenization of cells via vortexing in lysis buffer is very necessary. Choose the best RNA isolation method keeping in mind the downstream applications, generally, column-based isolations result in clean and concentrated RNA samples. Downstream applications like sequencing and cDNA synthesis require high-quality RNA, always treat the samples with DNases and check their integrity by running a gel.

RNA RNA isolation / purification Cells immortalized DU145

Short hairpin or small hairpin RNA (shRNA) is artificial RNA, which has a hairpin loop structure, and uses inherent microRNA (miRNA) machinery to silence target gene expression. This is called RNA interference (RNAi). These can be delivered via plasmids or viral/bacterial vectors. Challenges in shRNA-mediated gene silencing include: 1. Off-target silencing, 2. Packaging shRNA encoding lentivirus, and 3. Stable transduction in cells. RNAi have been designed to have anywhere from 19-27 bs, but the most effective design has 19 bp. In case commercial shRNAs are not available, potential target sites can be chosen within exon, 5’- or 3’ UTR, depending on which splice variants of the gene are desired. One should use the latest algorithms and choose at least two different sequences, targeting different regions, in order to have confidence in overcoming off-target effects. A BLAST search after selecting potential design will eliminate potential off-target sequences. For the second challenge, sequencing the vector using primers for either strand (50-100 bp upstream) is suggested, along with using enzymatic digestion on agarose gel for the vector. Next, once the shRNA-containing vector is packaged in a virus, it is important to check the viral titer before transduction. Finally, using a marker in the lentiviral vector (fluorescent protein or antibiotic resistance), along with qPCR for target gene expression can help in determining efficacy of transduction and shRNA on its target site.

RNA shRNA gene silencing Human Islets of langerhans Negative control (scrambled) lentiviral particles

Short hairpin or small hairpin RNA (shRNA) is artificial RNA, which has a hairpin loop structure, and uses inherent microRNA (miRNA) machinery to silence target gene expression. This is called RNA interference (RNAi). These can be delivered via plasmids or viral/bacterial vectors. Challenges in shRNA-mediated gene silencing include: 1. Off-target silencing, 2. Packaging shRNA encoding lentivirus, and 3. Stable transduction in cells. RNAi have been designed to have anywhere from 19-27 bs, but the most effective design has 19 bp. In case commercial shRNAs are not available, potential target sites can be chosen within exon, 5’- or 3’ UTR, depending on which splice variants of the gene are desired. One should use the latest algorithms and choose at least two different sequences, targeting different regions, in order to have confidence in overcoming off-target effects. A BLAST search after selecting potential design will eliminate potential off-target sequences. For the second challenge, sequencing the vector using primers for either strand (50-100 bp upstream) is suggested, along with using enzymatic digestion on agarose gel for the vector. Next, once the shRNA-containing vector is packaged in a virus, it is important to check the viral titer before transduction. Finally, using a marker in the lentiviral vector (fluorescent protein or antibiotic resistance), along with qPCR for target gene expression can help in determining efficacy of transduction and shRNA on its target site.

RNA shRNA gene silencing Human Neuroblastoma cells (SH-SY5Y) Connexin 43 lentiviral particles

ROS has a very short half-lives in biological environment as they are influenced by exposure to ambient oxygen. As it is highly reactive and hard to measure care should be taken to ensure the stability of the sample during isolation, preparation, storage, and analysis.

Cellular assays ROS assay cell type DU145

Cells are sourced from various tissues to grow them in in-vitro conditions. Therefore, cell specific nutrients are important for their survival, maintenance and growth. Determining the appropriate cell culture media is a challenge if you are growing a cell line or a microorganism for the first time. Established cell lines, primary cells, stem cells, bacteria and Yeast all require varied nutrients from basic to complex. Based on the cell type, one can easy find what media and nutrients your peers have used before you try to reinvent the wheel.

Cell culture media Mammalian cell culture media DU145
Fenozol Product

Get tips on using Fenozol to perform siRNA / miRNA gene silencing Human - BOSC23

Products A&A Biotechnology Fenozol

Cell Invasion or Cell Migration assays are technically challenging to set up as the gradient between the two compartments equilibrates in time during the assay. It is also problematic to view cells and for cells to migrate through a non-physiologic polycarbonate or polypropylene filter. Care must be taken while loading the well with cells to form a single cell suspension. Precaution must be taken while trypsinization (under-trypsinization can lead to cell clumping while over-trypsinization could strip off adhesion molecules necessary for migration). This leads to difficulty in getting significant results, when only small numbers of cells cross the filter or when the distribution and/or staining of the cells is uneven.

Cellular assays Cell migration / Invasion cell type DU145

Get tips on using Stealth siRNA_GATA2 to perform siRNA / miRNA gene silencing Human - LAD2 GATA2

Products Thermo Fisher Scientific Stealth siRNA_GATA2

Get tips on using PICK1 siRNA to perform siRNA / miRNA gene silencing Rat - Astrocytes PICK1

Products Sigma-Aldrich PICK1 siRNA

Get tips on using Fabp5 siRNA to perform siRNA / miRNA gene silencing Rat - PC12 Fabp5

Products Thermo Fisher Scientific Fabp5 siRNA

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms