Protein expression and purification Bacteria DH10Bac™

- Found 8390 results

Get tips on using CelLytic™ NuCLEAR™ Extraction Kit to perform Protein isolation Mammalian cells - BHK-21

Products Sigma-Aldrich CelLytic™ NuCLEAR™ Extraction Kit

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Gene expression arrays Mouse liver tissue Cyanine-3-CTP

Get tips on using 2x Laemmli Sample Buffer to perform Protein isolation Bacteria - Vibrio alginolyticus

Products Bio-Rad Laboratories 2x Laemmli Sample Buffer

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Gene expression arrays A-375 human melanoma Digoxigenin-11-dUTP

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Gene expression arrays Rat pancreas tissue Cyanine 3 & cyanine 5

The most widely used method for protein quantification is by spectrophotometry. The concentration of the protein in the samples is measured at an absorbance of 280 nm. The absorbance of the sample protein is then plotted against a standard curve. This method allows for total protein quantification in a sample (cell and tissue extracts). Before analysing the concentration of protein in the sample, it is important to choose the right test method.  For high protein concentration samples (above 5 - 160 mg/ml) the best method is to use the Biuret test. For low concentrations samples (between 1 - 2000µg/ml) the best methods are Lowry assay, BCA assay, Bradford assay and coomassie blue (for exact sensitivity of the test kits you use, refer to manufacturer's protocol). If the samples contain detergents like Triton X-100 then BCA assay is the best choice. For samples that have proteins larger than 3 KDa in size Bradford assay is the best choice. Each method has advantages and disadvantages, plan your analysis considering your sample characteristics.

Proteins Protein quantification Colorimetric method

The most widely used method for protein quantification is by spectrophotometry. The concentration of the protein in the samples is measured at an absorbance of 280 nm. The absorbance of the sample protein is then plotted against a standard curve. This method allows for total protein quantification in a sample (cell and tissue extracts). Before analysing the concentration of protein in the sample, it is important to choose the right test method.  For high protein concentration samples (above 5 - 160 mg/ml) the best method is to use the Biuret test. For low concentrations samples (between 1 - 2000µg/ml) the best methods are Lowry assay, BCA assay, Bradford assay and coomassie blue (for exact sensitivity of the test kits you use, refer to manufacturer's protocol). If the samples contain detergents like Triton X-100 then BCA assay is the best choice. For samples that have proteins larger than 3 KDa in size Bradford assay is the best choice. Each method has advantages and disadvantages, plan your analysis considering your sample characteristics.

Proteins Protein quantification Fluorimetric method

Get tips on using CelLytic™ NuCLEAR™ Extraction Kit to perform Protein isolation Mammalian cells - Human eutopic endometrial stromal cells

Products Sigma-Aldrich CelLytic™ NuCLEAR™ Extraction Kit

Plasmid isolation is an important technique in molecular biology or any kind of genetic editing. It involves amplifying plasmids overnight by transforming them into competent bacterial cells. The desired colonies of these bacteria can then be grown in shaker cultures, at appropriate shaking speed, oxygen availability and temperature. These liquid cultures can then be ultracentrifuged to pellet the bacteria, which are then used for plasmid isolation. The bacteria are first resuspended in a buffer, then lysed, neutralized, purified in a column, eluted, precipitated with ethanol and then resuspended. During plasmid isolation, it is important to lyse cells quickly because lysing bacteria for too long may lead to irreversible denaturing of the plasmid. Usually, alkaline lysis is used for isolation because it is a mild treatment. It isolates plasmid DNA and other cell components such as proteins by breaking cells apart with an alkaline solution. Precipitation removes the proteins, and the plasmid DNA recovers with alcohol precipitation. Resuspension and lysis buffers should be mixed thoroughly in order to prevent the DNA from breaking into smaller fragments. This is because broken gDNA can reanneal and remain in the solution, without binding to the column.

DNA Plasmid Isolation Enterobacteriaceae

Short hairpin or small hairpin RNA (shRNA) is artificial RNA, which has a hairpin loop structure, and uses inherent microRNA (miRNA) machinery to silence target gene expression. This is called RNA interference (RNAi). These can be delivered via plasmids or viral/bacterial vectors. Challenges in shRNA-mediated gene silencing include 1. Off-target silencing, 2. Packaging shRNA encoding lentivirus, and 3. Stable transduction in cells. RNAi has been designed to have anywhere from 19-27 bs, but the most effective design has 19 bp. In case commercial shRNAs are not available, potential target sites can be chosen within exon, 5’- or 3’ UTR, depending on which splice variants of the gene are desired. One should use the latest algorithms and choose at least two different sequences, targeting different regions, in order to have confidence in overcoming off-target effects. A BLAST search after selecting potential design will eliminate potential off-target sequences. For the second challenge, sequencing the vector using primers for either strand (50-100 bp upstream) is suggested, along with using enzymatic digestion on agarose gel for the vector. Next, once the shRNA-containing vector is packaged in a virus, it is important to check the viral titer before transduction. Finally, using a marker in the lentiviral vector (fluorescent protein or antibiotic resistance), along with qPCR for target gene expression can help in determining the efficacy of transduction and shRNA on its target site.

RNA shRNA gene silencing Rat MM1 ADF

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms