Get tips on using RNeasy Lipid Tissue Mini Kit to perform RNA isolation / purification Cells - primary human brain microvascular endothelial cells
Get tips on using QIAamp DNA FFPE Tissue Kit to perform DNA isolation / purification Cells - Primary cells Pseudomyxoma peritonei (PMP) cells
The RNA interference (RNAi) is used to inhibit gene expression or translation, by neutralizing targeted mRNA molecules. Two types of RNA molecules such as microRNA (miRNA) and small interfering RNA (siRNA) play a central role in RNAi. Few points have to considered to increase the transfection efficiency of siRNA. Always use healthy, actively dividing cells to maximize transfection efficiency. The confluency of cells should be between 50-70%. Always use the most appropriate siRNA concentration to avoid off-target effects and unwanted toxic side effects. Positive and negative controls should be used for each and every experiment to determine transfection efficiency.
Get tips on using pMXs-IRES-Bsd Retroviral Expression Vector to perform CRISPR Human - Repression DDX3Y
Get tips on using pMXs-IRES-Bsd Retroviral Expression Vector to perform CRISPR Human - Repression DDX3X
Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.
Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.
Get tips on using AllPrep DNA/RNA/miRNA Universal Kit to perform RNA isolation / purification Tissue - mouse adipose tissue
Get tips on using FITC Mouse Anti-Mouse NK-1.1 to perform Flow cytometry Anti-bodies Mouse - NK1.1
Get tips on using APC Mouse Anti-Mouse NK-1.1 to perform Flow cytometry Anti-bodies Mouse - NK1.1
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment