miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.
miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.
Reporter gene assays enable high sensitivity measurement of gene expression and cell signaling through the addition of bioluminescent genes into target cells. One of the major challenges is to make a specific construct that has no responses other than those related to the signaling pathway of interest. This can be achieved by selecting highly specific reporter constructs containing only defined responsive elements and a minimal promoter linked to reporter enzymes such as luciferase
Get tips on using SurePrint G3 Human CGH Microarray Kit, 4x180K to perform Microarray Comperative genomic hybridization - Human BT474
Get tips on using SurePrint G3 Human CGH Microarray Kit, 4x180K to perform Microarray Comperative genomic hybridization - Human SKBR3
Get tips on using Unrestricted HD-CGH Microarray ISCA v2, 4x44k to perform Microarray Comperative genomic hybridization - Human PBMCs
Get tips on using SurePrint G3 Mouse GE 8x60K Microarray Kit to perform Microarray Comperative genomic hybridization - Mouse iPSC
Get tips on using SurePrint G3 Human CGH Microarray Kit, 4x180K to perform Microarray Comperative genomic hybridization - Human Blood cells
Get tips on using SurePrint G3 Human CGH Microarray Kit, 2x400K to perform Microarray Comperative genomic hybridization - Human Blood cells
Get tips on using SurePrint G3 Human CGH Microarray Kit, 4x180K to perform Microarray Comperative genomic hybridization - Human SH-SY5Y
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment