siRNA / miRNA gene silencing Rat H19-7

- Found 4540 results

Cell cycle can be challenging due to difference introduced by sample handling, timing, and difference within the sample. Downstream instriuments to analyse cell cycle (Multicolor flow cytometry and multicolor imaging) can answer these challenges. Relevant markers can be combined with cell phenotyping markers to look at events within subpopulations of cells.

Cellular assays Cell cycle assay human MCF-7

Get tips on using Ad-Sal-shRNA to perform shRNA gene silencing Rat - H9c2 salusin-β

Products Genomeditech Co. Ad-Sal-shRNA

As autophagy is a multi-step process which includes not just the formation of autophagosomes, but most importantly, flux through the entire system, including the degradation upon fusion with lysosomes, which makes it quite challenging for detection. There are several methods for detection in mammalian cells, including immunoblotting analysis of LC3 and p62 and detection of autophagosome formation/maturation by fluorescence microscopy, Currently, there is no single “gold standard” for determining the autophagic activity that is applicable in every experimental context, hence it is recommended to go for the combined use of multiple methods to accurately assess the autophagic activity in any given biological setting.

Cellular assays Autophagy assay cell type MCF-7

Cells are sourced from various tissues to grow them in in-vitro conditions. Therefore, cell specific nutrients are important for their survival, maintenance and growth. Determining the appropriate cell culture media is a challenge if you are growing a cell line or a microorganism for the first time. Established cell lines, primary cells, stem cells, bacteria and Yeast all require varied nutrients from basic to complex. Based on the cell type, one can easy find what media and nutrients your peers have used before you try to reinvent the wheel.

Cell culture media Mammalian cell culture media MCF-7

Get tips on using FITC Annexin V Apoptosis Detection Kit with 7-AAD to perform Apoptosis assay cell type - SKOV3

Products BioLegend FITC Annexin V Apoptosis Detection Kit with 7-AAD

Get tips on using FITC Annexin V Apoptosis Detection Kit with 7-AAD to perform Apoptosis assay cell type - PANC-1

Products BioLegend FITC Annexin V Apoptosis Detection Kit with 7-AAD

Get tips on using PE Annexin V Apoptosis Detection Kit with 7-AAD to perform Apoptosis assay cell type - Human T-cells

Products BioLegend PE Annexin V Apoptosis Detection Kit with 7-AAD

Cellular assays Cell line authentication MCF-7 cell line

Get tips on using PE Annexin V Apoptosis Detection Kit with 7-AAD to perform Apoptosis assay cell type - T-cells Mouse (OT-I)

Products BD Biosciences PE Annexin V Apoptosis Detection Kit with 7-AAD

Protein expression refers to the techniques in which a protein of interest is synthesized, modified or regulated in cells. The blueprints for proteins are stored in DNA which is then transcribed to produce messenger RNA (mRNA). mRNA is then translated into protein. In prokaryotes, this process of mRNA translation occurs simultaneously with mRNA transcription. In eukaryotes, these two processes occur at separate times and in separate cellular regions (transcription in nucleus and translation in the cytoplasm). Recombinant protein expression utilizes cellular machinery to generate proteins, instead of chemical synthesis of proteins as it is very complex. Proteins produced from such DNA templates are called recombinant proteins and DNA templates are simple to construct. Recombinant protein expression involves transfecting cells with a DNA vector that contains the template. The cultured cells can then transcribe and translate the desired protein. The cells can be lysed to extract the expressed protein for subsequent purification. Both prokaryotic and eukaryotic protein expression systems are widely used. The selection of the system depends on the type of protein, the requirements for functional activity and the desired yield. These expression systems include mammalian, insect, yeast, bacterial, algal and cell-free. Each of these has pros and cons. Mammalian expression systems can be used for transient or stable expression, with ultra high-yield protein expression. However, high yields are only possible in suspension cultures and more demanding culture conditions. Insect cultures are the same as mammalian, except that they can be used as both static and suspension cultures. These cultures also have demanding culture conditions and may also be time-consuming. Yeast cultures can produce eukaryotic proteins and are scalable, with minimum culture requirements. Yeast cultures may require growth culture optimization. Bacterial cultures are simple, scalable and low cost, but these may require protein-specific optimization and are not suitable for all mammalian proteins. Algal cultures are optimized for robust selection and expression, but these are less developed than other host platforms. Cell-free systems are open, free of any unnatural compounds, fast and simple. This system is, however, not optimal for scaling up.

Proteins Protein Expression Prokaryotic cells E. coli chicken IL-7

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms