Though DNA quantification is but one small step in the multifaceted DNA sample preparation workflow, it can have large implications on the performance and validity of conclusions drawn from downstream assays. Major challenges include accuracy, precision, reproducibility, and detection of present contamination. Among UV spectrophotometry, fluorescence and real-time PCR based methods, the quantification method should be chosen based on the requirement of the downstream assay.
Though DNA quantification is but one small step in the multifaceted DNA sample preparation workflow, it can have large implications on the performance and validity of conclusions drawn from downstream assays. Major challenges include accuracy, precision, reproducibility, and detection of present contamination. Among UV spectrophotometry, fluorescence and real-time PCR based methods, the quantification method should be chosen based on the requirement of the downstream assay.
Though DNA quantification is but one small step in the multifaceted DNA sample preparation workflow, it can have large implications on the performance and validity of conclusions drawn from downstream assays. Major challenges include accuracy, precision, reproducibility, and detection of present contamination. Among UV spectrophotometry, fluorescence and real-time PCR based methods, the quantification method should be chosen based on the requirement of the downstream assay.
Though DNA quantification is but one small step in the multifaceted DNA sample preparation workflow, it can have large implications on the performance and validity of conclusions drawn from downstream assays. Major challenges include accuracy, precision, reproducibility, and detection of present contamination. Among UV spectrophotometry, fluorescence and real-time PCR based methods, the quantification method should be chosen based on the requirement of the downstream assay.
Though DNA quantification is but one small step in the multifaceted DNA sample preparation workflow, it can have large implications on the performance and validity of conclusions drawn from downstream assays. Major challenges include accuracy, precision, reproducibility, and detection of present contamination. Among UV spectrophotometry, fluorescence and real-time PCR based methods, the quantification method should be chosen based on the requirement of the downstream assay.
Transfection is a powerful technique that enables the study of the function of genes and gene products in cells. Based on the nature of experiments, we may need a stable DNA transfection in cells for persistent gain-of-function or loss-of-function of the target gene. For stable transfection, integration of a DNA vector into the chromosome is crucial which requires selective screening and clonal isolation. By carefully selecting a viral delivery system and related reagents we can ensure safe and highly-efficient delivery of expression constructs for high-level constitutive or inducible expression in any mammalian cell type.
Get tips on using Ccl2 siRNA to perform siRNA / miRNA gene silencing Rat - Neuronal cells MCP-1
Get tips on using HuR siRNA to perform siRNA / miRNA gene silencing Rat - IEC-6 HuR Lipid
Get tips on using Rn_Pdcd8_1 FlexiTube siRNA to perform siRNA / miRNA gene silencing Rat - H9c2 AIF/Pdcd8
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment