siRNA / miRNA gene silencing Human Min-6

- Found 6917 results

Get tips on using BLOCK-iT™ Adenoviral RNAi Expression System, pAd/BLOCK-iT™-DEST RNAi Gateway Vector to perform shRNA gene silencing Mouse - P19 Foxm1

Products Thermo Fisher Scientific BLOCK-iT™ Adenoviral RNAi Expression System, pAd/BLOCK-iT™-DEST RNAi Gateway Vector

Get tips on using Galacto-Light Plus™ β-Galactosidase Reporter Gene Assay System to perform Reporter gene assay β-galactosidase substrates - C2C12

Products Thermo Fisher Scientific Galacto-Light Plus™ β-Galactosidase Reporter Gene Assay System

Get tips on using Dual-Light™ Luciferase & β-Galactosidase Reporter Gene Assay System to perform Reporter gene assay β-galactosidase substrates - Hep3B

Products Thermo Fisher Scientific Dual-Light™ Luciferase & β-Galactosidase Reporter Gene Assay System

Get tips on using Dual-Light™ Luciferase & β-Galactosidase Reporter Gene Assay System to perform Reporter gene assay β-galactosidase substrates - U2OS

Products Thermo Fisher Scientific Dual-Light™ Luciferase & β-Galactosidase Reporter Gene Assay System

Get tips on using Galacto-Light Plus™ β-Galactosidase Reporter Gene Assay System to perform Reporter gene assay β-galactosidase substrates - CHO-K1

Products Thermo Fisher Scientific Galacto-Light Plus™ β-Galactosidase Reporter Gene Assay System

Get tips on using Galacto-Light Plus™ β-Galactosidase Reporter Gene Assay System to perform Reporter gene assay β-galactosidase substrates - RAW 264.7

Products Thermo Fisher Scientific Galacto-Light Plus™ β-Galactosidase Reporter Gene Assay System

Flow cytometry is an immunophenotyping technique whereby sing cell suspensions are stained for either cell surface markers or intracellular proteins by fluorescently-labelled antibodies and analyzed with a flow cytometer, where fluorescently-labelled molecules are excited by the laser to emit light at varying wavelengths, which is then detected by the instrument. There are several key criteria which are required to be kept in mind while designing a flow experiment- 1. Antibody titration (optimal dilution of antibodies should be calculated in order to avoid over- or under- saturated signals for proper detection of surface and intracellular markers), 2. Precision (3 or more replicates of the sample should be used per experiment), 3. Specificity (proper isotype controls should be included in the experiment), 4. Day-to-day variability (experiments should be repeated 3 or more times to ensure consistency and avoid variability due to flow cytometer settings), 5. Antibody interaction (Fluorescence minus one or FMO should be used, which is the comparison of signals from panel minus one antibody vs. the full panel), and 6. Antibody stability (fluorescently-labelled antibodies should be stored at 4C).

Proteins Flow cytometry Anti-bodies Human CD133

Flow cytometry is an immunophenotyping technique whereby sing cell suspensions are stained for either cell surface markers or intracellular proteins by fluorescently-labelled antibodies and analyzed with a flow cytometer, where fluorescently-labelled molecules are excited by the laser to emit light at varying wavelengths, which is then detected by the instrument. There are several key criteria which are required to be kept in mind while designing a flow experiment- 1. Antibody titration (optimal dilution of antibodies should be calculated in order to avoid over- or under- saturated signals for proper detection of surface and intracellular markers), 2. Precision (3 or more replicates of the sample should be used per experiment), 3. Specificity (proper isotype controls should be included in the experiment), 4. Day-to-day variability (experiments should be repeated 3 or more times to ensure consistency and avoid variability due to flow cytometer settings), 5. Antibody interaction (Fluorescence minus one or FMO should be used, which is the comparison of signals from panel minus one antibody vs. the full panel), and 6. Antibody stability (fluorescently-labelled antibodies should be stored at 4C).

Proteins Flow cytometry Anti-bodies Human CD44

Flow cytometry is an immunophenotyping technique whereby sing cell suspensions are stained for either cell surface markers or intracellular proteins by fluorescently-labelled antibodies and analyzed with a flow cytometer, where fluorescently-labelled molecules are excited by the laser to emit light at varying wavelengths, which is then detected by the instrument. There are several key criteria which are required to be kept in mind while designing a flow experiment- 1. Antibody titration (optimal dilution of antibodies should be calculated in order to avoid over- or under- saturated signals for proper detection of surface and intracellular markers), 2. Precision (3 or more replicates of the sample should be used per experiment), 3. Specificity (proper isotype controls should be included in the experiment), 4. Day-to-day variability (experiments should be repeated 3 or more times to ensure consistency and avoid variability due to flow cytometer settings), 5. Antibody interaction (Fluorescence minus one or FMO should be used, which is the comparison of signals from panel minus one antibody vs. the full panel), and 6. Antibody stability (fluorescently-labelled antibodies should be stored at 4C).

Proteins Flow cytometry Anti-bodies Human A2B5

Flow cytometry is an immunophenotyping technique whereby sing cell suspensions are stained for either cell surface markers or intracellular proteins by fluorescently-labelled antibodies and analyzed with a flow cytometer, where fluorescently-labelled molecules are excited by the laser to emit light at varying wavelengths, which is then detected by the instrument. There are several key criteria which are required to be kept in mind while designing a flow experiment- 1. Antibody titration (optimal dilution of antibodies should be calculated in order to avoid over- or under- saturated signals for proper detection of surface and intracellular markers), 2. Precision (3 or more replicates of the sample should be used per experiment), 3. Specificity (proper isotype controls should be included in the experiment), 4. Day-to-day variability (experiments should be repeated 3 or more times to ensure consistency and avoid variability due to flow cytometer settings), 5. Antibody interaction (Fluorescence minus one or FMO should be used, which is the comparison of signals from panel minus one antibody vs. the full panel), and 6. Antibody stability (fluorescently-labelled antibodies should be stored at 4C).

Proteins Flow cytometry Anti-bodies Human CD15

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms