Get tips on using STEAP2 metalloreductase to perform siRNA / miRNA gene silencing Human - PC3 (human prostate cancer cell line) STEAP2
ELISA is the most commonly used method of detecting and quantifying the concentration of an antigen in an unknown sample. During the experiment, If you get a weak signal, then make sure reagents are at room temperature before starting the assay. Try increasing incubation times to ensure maximal antibody binding and amplify the signal. Secondly, if you get values above 0 in the negative control indicates a high background signal. Try to consider reducing your antibody concentration and prevent non-specific binding of antibodies by using affinity-purified antibody and suitable blocking buffers. To avoid high well to well variation, do not stack plates during incubation, no bubbles in the plate and wash wells thoroughly to avoid variation.
Get tips on using SIRT1 siRNA and shRNA Plasmids (h) to perform siRNA / miRNA gene silencing Human - PC3 (human prostate cancer cell line) SIRT1
Get tips on using heat shock protein family A (Hsp70) member 5 to perform siRNA / miRNA gene silencing Human - PC3 (human prostate cancer cell line) HSPA5 (GRP78)
Get tips on using PowerPlex® 18D System to perform Cell line authentication Human iPSC cells derived from human dermal fibroblasts
Get tips on using STEMdiff™ SMADi Neural Induction Kit to perform Stem cell Differentiation media Differentiation of Human iPSC into Human Neuroepithelial cells
Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.
DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.
Get tips on using Silencer® Select GLO-1 siRNA to perform siRNA / miRNA gene silencing Human - Primary Human Aortic Endothelial Cells GLO-1 Lipid
Get tips on using CytoSelect™ 24-Well Wound Healing Assay to perform Wound healing assay cell type - human gHMVEC (glioma human microvascular endothelial cells)
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment