Wound healing assay can be challenging due to inconsistencies and variations while making a wound on the confluent cell monolayer, consequently leads to wounds of varying sizes and widths. Moreover, this assay causes damage to the cells that are at the edge of the wound, which can prevent cell migration into the wound site and healing. The best solution is to use the standard wound healing assay kits using either combs or inserts to make a defined wound field or gap and prevent the well-to-well variation in these assays.
Wound healing assay can be challenging due to inconsistencies and variations while making a wound on the confluent cell monolayer, consequently leads to wounds of varying sizes and widths. Moreover, this assay causes damage to the cells that are at the edge of the wound, which can prevent cell migration into the wound site and healing. The best solution is to use the standard wound healing assay kits using either combs or inserts to make a defined wound field or gap and prevent the well-to-well variation in these assays.
Wound healing assay can be challenging due to inconsistencies and variations while making a wound on the confluent cell monolayer, consequently leads to wounds of varying sizes and widths. Moreover, this assay causes damage to the cells that are at the edge of the wound, which can prevent cell migration into the wound site and healing. The best solution is to use the standard wound healing assay kits using either combs or inserts to make a defined wound field or gap and prevent the well-to-well variation in these assays.
Wound healing assay can be challenging due to inconsistencies and variations while making a wound on the confluent cell monolayer, consequently leads to wounds of varying sizes and widths. Moreover, this assay causes damage to the cells that are at the edge of the wound, which can prevent cell migration into the wound site and healing. The best solution is to use the standard wound healing assay kits using either combs or inserts to make a defined wound field or gap and prevent the well-to-well variation in these assays.
Wound healing assay can be challenging due to inconsistencies and variations while making a wound on the confluent cell monolayer, consequently leads to wounds of varying sizes and widths. Moreover, this assay causes damage to the cells that are at the edge of the wound, which can prevent cell migration into the wound site and healing. The best solution is to use the standard wound healing assay kits using either combs or inserts to make a defined wound field or gap and prevent the well-to-well variation in these assays.
Contamination can affect cell characteristics, i.e., growth, metabolism, and morphology leading to unreliable and erroneous experimental data. Depending on the source of contaminants, one can detect contamination by using a light microscope, gram stain, isothermal amplification, or PCR. Bacteria and fungi can usually be identified by optical microscopy. Mycoplasma in cell cultures cannot be detected visually. Hence, these microbes can go unnoticed for long periods and are determined using dedicated assays. Early and rapid identification of contaminants is vital to detect, handle and prevent contamination for good cell-culture practices. However, detection and identification can be challenging and tricky based on usual visual identifications. Hence it is essential to use a standard contamination detection kit to detect and maintain best practices.
Contamination can affect cell characteristics, i.e., growth, metabolism, and morphology leading to unreliable and erroneous experimental data. Depending on the source of contaminants, one can detect contamination by using a light microscope, gram stain, isothermal amplification, or PCR. Bacteria and fungi can usually be identified by optical microscopy. Mycoplasma in cell cultures cannot be detected visually. Hence, these microbes can go unnoticed for long periods and are determined using dedicated assays. Early and rapid identification of contaminants is vital to detect, handle and prevent contamination for good cell-culture practices. However, detection and identification can be challenging and tricky based on usual visual identifications. Hence it is essential to use a standard contamination detection kit to detect and maintain best practices.
Contamination can affect cell characteristics, i.e., growth, metabolism, and morphology leading to unreliable and erroneous experimental data. Depending on the source of contaminants, one can detect contamination by using a light microscope, gram stain, isothermal amplification, or PCR. Bacteria and fungi can usually be identified by optical microscopy. Mycoplasma in cell cultures cannot be detected visually. Hence, these microbes can go unnoticed for long periods and are determined using dedicated assays. Early and rapid identification of contaminants is vital to detect, handle and prevent contamination for good cell-culture practices. However, detection and identification can be challenging and tricky based on usual visual identifications. Hence it is essential to use a standard contamination detection kit to detect and maintain best practices.
Contamination can affect cell characteristics, i.e., growth, metabolism, and morphology leading to unreliable and erroneous experimental data. Depending on the source of contaminants, one can detect contamination by using a light microscope, gram stain, isothermal amplification, or PCR. Bacteria and fungi can usually be identified by optical microscopy. Mycoplasma in cell cultures cannot be detected visually. Hence, these microbes can go unnoticed for long periods and are determined using dedicated assays. Early and rapid identification of contaminants is vital to detect, handle and prevent contamination for good cell-culture practices. However, detection and identification can be challenging and tricky based on usual visual identifications. Hence it is essential to use a standard contamination detection kit to detect and maintain best practices.
Contamination can affect cell characteristics, i.e., growth, metabolism, and morphology leading to unreliable and erroneous experimental data. Depending on the source of contaminants, one can detect contamination by using a light microscope, gram stain, isothermal amplification, or PCR. Bacteria and fungi can usually be identified by optical microscopy. Mycoplasma in cell cultures cannot be detected visually. Hence, these microbes can go unnoticed for long periods and are determined using dedicated assays. Early and rapid identification of contaminants is vital to detect, handle and prevent contamination for good cell-culture practices. However, detection and identification can be challenging and tricky based on usual visual identifications. Hence it is essential to use a standard contamination detection kit to detect and maintain best practices.
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment