Wound healing assay cell type rat

- Found 7838 results

Hi everyone! I am planning on floxing mice with CRISPR but I am having trouble deciding which region to target. Do you have any tips on choosing?

Discussions Floxing mice with CRISPR

Get tips on using T-PER™ Tissue Protein Extraction Reagent to perform Protein isolation Tissue - Rabbit eye retina/choroids

Products Thermo Fisher Scientific T-PER™ Tissue Protein Extraction Reagent

Gene silencing through the use of small interfering RNA (siRNA) has become a primary tool for identifying disease-causing genes. There are several aspects for preparing and delivering effective siRNA to knockdown a target gene. The length of siRNA should be 21–23nt long with G/C content 30–50%. If a validated siRNA sequence for your target gene is not available, use siRNA generated against the entire target gene ORF. Always work with two or three different siRNA constructs to get reliable results. If you are not sure how much siRNA to use for a given experiment, start with a transfection concentration of 10-50 nM and use siRNA-specific transfection reagent to ensure efficient siRNA delivery in a wide range of cells.

RNA siRNA / miRNA gene silencing Mouse B16 Melanoma cells FANCD2

Gene silencing through the use of small interfering RNA (siRNA) has become a primary tool for identifying disease-causing genes. There are several aspects for preparing and delivering effective siRNA to knockdown a target gene. The length of siRNA should be 21–23nt long with G/C content 30–50%. If a validated siRNA sequence for your target gene is not available, use siRNA generated against the entire target gene ORF. Always work with two or three different siRNA constructs to get reliable results. If you are not sure how much siRNA to use for a given experiment, start with a transfection concentration of 10-50 nM and use siRNA-specific transfection reagent to ensure efficient siRNA delivery in a wide range of cells.

RNA siRNA / miRNA gene silencing Mouse Embryonic stem cells CXCR4

Gene silencing through the use of small interfering RNA (siRNA) has become a primary tool for identifying disease-causing genes. There are several aspects for preparing and delivering effective siRNA to knockdown a target gene. The length of siRNA should be 21–23nt long with G/C content 30–50%. If a validated siRNA sequence for your target gene is not available, use siRNA generated against the entire target gene ORF. Always work with two or three different siRNA constructs to get reliable results. If you are not sure how much siRNA to use for a given experiment, start with a transfection concentration of 10-50 nM and use siRNA-specific transfection reagent to ensure efficient siRNA delivery in a wide range of cells.

RNA siRNA / miRNA gene silencing Mouse Embryonic stem cells Gpat1

Gene silencing through the use of small interfering RNA (siRNA) has become a primary tool for identifying disease-causing genes. There are several aspects for preparing and delivering effective siRNA to knockdown a target gene. The length of siRNA should be 21–23nt long with G/C content 30–50%. If a validated siRNA sequence for your target gene is not available, use siRNA generated against the entire target gene ORF. Always work with two or three different siRNA constructs to get reliable results. If you are not sure how much siRNA to use for a given experiment, start with a transfection concentration of 10-50 nM and use siRNA-specific transfection reagent to ensure efficient siRNA delivery in a wide range of cells.

RNA siRNA / miRNA gene silencing Mouse Embryonic stem cells Jun

Generally it has been difficult to isolate high-quality RNA from yeast because of problems disrupting the cells. Use of enzymes to disrupt cell wall can alter gene expression profiles. Therefore, physical disruption can result in high quality RNA for all downstream processing. Use of DNAse and proteinase K will remove traces of DNA contamination and proteins respectively.

RNA RNA isolation / purification Yeast Saccharomyces cerevisiae

Generally it has been difficult to isolate high-quality RNA from yeast because of problems disrupting the cells. Use of enzymes to disrupt cell wall can alter gene expression profiles. Therefore, physical disruption can result in high quality RNA for all downstream processing. Use of DNAse and proteinase K will remove traces of DNA contamination and proteins respectively.

RNA RNA isolation / purification Yeast Ashbya gossypii

Generally it has been difficult to isolate high-quality RNA from yeast because of problems disrupting the cells. Use of enzymes to disrupt cell wall can alter gene expression profiles. Therefore, physical disruption can result in high quality RNA for all downstream processing. Use of DNAse and proteinase K will remove traces of DNA contamination and proteins respectively.

RNA RNA isolation / purification Yeast Aspergillus nidulans

Generally it has been difficult to isolate high-quality RNA from yeast because of problems disrupting the cells. Use of enzymes to disrupt cell wall can alter gene expression profiles. Therefore, physical disruption can result in high quality RNA for all downstream processing. Use of DNAse and proteinase K will remove traces of DNA contamination and proteins respectively.

RNA RNA isolation / purification Yeast Candida albicans

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms