Get tips on using DYKDDDDK Tag (D6W5B) Rabbit mAb (Binds to same epitope as Sigma's Anti-FLAG® M2 Antibody) #14793 to perform ChIP Anti-bodies FLAG
I would like to excise a large strand of DNA and insert a new one using CRISPR. My problem is that my strand will be a little over 1kb and I am not sure if this is going to be a limiting factor. Also, how long should the homology arms be for a region of this size?
Acid phosphatase detection heavily relies on determining the concentration of tartrate-resistant acid phosphatase (TRAP) in the sample. Hence, sample preparation is very crucial and it should be done strictly as per kit manufacturer instructions to avoid any inconsistency and poor sensitivity
Acid phosphatase detection heavily relies on determining the concentration of tartrate-resistant acid phosphatase (TRAP) in the sample. Hence, sample preparation is very crucial and it should be done strictly as per kit manufacturer instructions to avoid any inconsistency and poor sensitivity.
Cell cycle can be challenging due to difference introduced by sample handling, timing, and difference within the sample. Downstream instriuments to analyse cell cycle (Multicolor flow cytometry and multicolor imaging) can answer these challenges. Relevant markers can be combined with cell phenotyping markers to look at events within subpopulations of cells.
Cell cycle can be challenging due to difference introduced by sample handling, timing, and difference within the sample. Downstream instriuments to analyse cell cycle (Multicolor flow cytometry and multicolor imaging) can answer these challenges. Relevant markers can be combined with cell phenotyping markers to look at events within subpopulations of cells.
Hello everyone! I am currently using different DNA isolation kits to extract DNA from insects. Even though I am able to successfully extract DNA I would like to maximize the yield. Do you have any tips that might help me with that even if the kits are not specifically designed for insect samples?
Transfection is a powerful technique that enables the study of the function of genes and gene products in cells. Based on the nature of experiments, we may need a stable DNA transfection in cells for persistent gain-of-function or loss-of-function of the target gene. For stable transfection, integration of a DNA vector into the chromosome is crucial which requires selective screening and clonal isolation. By carefully selecting a viral delivery system and related reagents we can ensure safe and highly-efficient delivery of expression constructs for high-level constitutive or inducible expression in any mammalian cell type.
Transfection is a powerful technique that enables the study of the function of genes and gene products in cells. Based on the nature of experiments, we may need a stable DNA transfection in cells for persistent gain-of-function or loss-of-function of the target gene. For stable transfection, integration of a DNA vector into the chromosome is crucial which requires selective screening and clonal isolation. By carefully selecting a viral delivery system and related reagents we can ensure safe and highly-efficient delivery of expression constructs for high-level constitutive or inducible expression in any mammalian cell type.
Cell cycle can be challenging due to difference introduced by sample handling, timing, and difference within the sample. Downstream instriuments to analyse cell cycle (Multicolor flow cytometry and multicolor imaging) can answer these challenges. Relevant markers can be combined with cell phenotyping markers to look at events within subpopulations of cells.
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment